Advertisement
Full-length article Stromal Cell Therapy|Articles in Press

Mesenchymal stromal cells regulate THP-1–differentiated macrophage cytokine production by activating Akt/mammalian target of rapamycin complex 1 pathway

  • Jung Hwa Ko
    Affiliations
    Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, Korea
    Search for articles by this author
  • Joo Youn Oh
    Correspondence
    Correspondence: Joo Youn Oh, Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea.
    Affiliations
    Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, Korea

    Department of Ophthalmology, Seoul National University College of Medicine, Jongno-gu, Seoul, Korea
    Search for articles by this author
Published:April 29, 2023DOI:https://doi.org/10.1016/j.jcyt.2023.03.013

      Abstract

      Background aims

      The Akt/mammalian target of rapamycin (mTOR) pathway in macrophages converges inflammatory and metabolic signals from multiple receptors to regulate a cell's survival, metabolism and activation. Although mesenchymal stromal cells (MSCs) are well known to modulate macrophage activation, the effects of MSCs on the Akt/mTOR pathway in macrophages have not been elucidated.

      Methods

      We herein investigated whether MSCs affect the Akt/mTOR complex 1 (mTORC1) pathway to regulate macrophage polarization.

      Results

      Results showed that human bone marrow–derived MSCs induced activation of Akt and its downstream mTORC1 signaling in THP-1–differentiated macrophages in a p62/sequestosome 1–independent manner. Inhibition of Akt or mTORC1 attenuated the effects of MSCs on the suppression of tumor necrosis factor-α and interleukin-12 production and the promotion of interleukin-10 and tumor growth factor-β1 in macrophages stimulated by lipopolysaccharide/ATP. Conversely, activation of Akt or mTORC1 reproduced and potentiated MSC effects on macrophage cytokine production. MSCs with cyclooxygenase-2 knockdown, however, failed to activate the Akt/mTORC1 signaling in macrophages and were less effective in the modulation of macrophage cytokine production than control MSCs.

      Conclusions

      These data demonstrate that MSCs control THP-1–differentiated macrophage activation at least partly through upregulation of the Akt/mTORC1 signaling in a cyclooxygenase-2–dependent manner.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Weichhart T
        • Costantino G
        • Poglitsch M
        • Rosner M
        • Zeyda M
        • Stuhlmeier KM
        • et al.
        The TSC-mTOR signaling pathway regulates the innate inflammatory response.
        Immunity. 2008; 29: 565-577
        • Altomare DA
        • Khaled AR.
        Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling.
        Curr Med Chem. 2012; 19: 3748-3762
        • Vergadi E
        • Ieronymaki E
        • Lyroni K
        • Vaporidi K
        • Tsatsanis C.
        Akt signaling pathway in macrophage activation and M1/M2 polarization.
        J Immunol. 2017; 198: 1006-1014
        • Linton MF
        • Moslehi JJ
        • Babaev VR.
        Akt Signaling in macrophage polarization, survival, and atherosclerosis.
        Int J Mol Sci. 2019; 20: 2703
        • Prockop DJ
        • Oh JY.
        Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation.
        Mol Ther. 2012; 20: 14-20
        • Prockop DJ
        • Oh JY.
        Medical therapies with adult stem/progenitor cells (MSCs): a backward journey from dramatic results in vivo to the cellular and molecular explanations.
        J Cell Biochem. 2012; 113: 1460-1469
        • Galipeau J.
        Macrophages at the nexus of mesenchymal stromal cell potency: the emerging role of chemokine cooperativity.
        Stem Cells. 2021; 39: 1145-1154
        • Cheung TS
        • Dazzi F.
        Mesenchymal–myeloid interaction in the regulation of immunity.
        Semin Immunol. 2018; 35: 59-68
        • Kabat M
        • Bobkov I
        • Kumar S
        • Grumet M.
        Trends in mesenchymal stem cell clinical trials 2004-2018: is efficacy optimal in a narrow dose range?.
        Stem Cells Transl Med. 2020; 9: 17-27
        • Trounson A
        • McDonald C.
        Stem cell therapies in clinical trials: progress and challenges.
        Cell Stem Cell. 2015; 17: 11-22
        • Oh JY
        • Lee RH.
        Mesenchymal stromal cells for the treatment of ocular autoimmune diseases.
        Prog Retin Eye Res. 2021; 85100967
        • Oh JY
        • Kim E
        • Yun YI
        • Lee RH.
        Mesenchymal stromal cells for corneal transplantation: literature review and suggestions for successful clinical trials.
        Ocul Surf. 2021; 20: 185-194
        • Németh K
        • Leelahavanichkul A
        • Yuen PS
        • Mayer B
        • Parmelee A
        • Doi K
        • et al.
        Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production.
        Nat Med. 2009; 15: 42-49
        • Choi H
        • Lee RH
        • Bazhanov N
        • Oh JY
        • Prockop DJ
        Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages.
        Blood. 2011; 118: 330-338
        • Ko JH
        • Lee HJ
        • Jeong HJ
        • Kim MK
        • Wee WR
        • Yoon SO
        • et al.
        Mesenchymal stem/stromal cells precondition lung monocytes/macrophages to produce tolerance against allo- and autoimmunity in the eye.
        Proc Natl Acad Sci U S A. 2016; 113: 158-163
        • Ko JH
        • Kim HJ
        • Jeong HJ
        • Lee HJ
        • Oh JY.
        Mesenchymal stem and stromal cells harness macrophage-derived amphiregulin to maintain tissue homeostasis.
        Cell Rep. 2020; 30 (3806-20.e6)
        • Viswanathan S
        • Shi Y
        • Galipeau J
        • Krampera M
        • Leblanc K
        • Martin I
        • Nolta J
        • Phinney DG
        • Sensebe L.
        Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature.
        Cytotherapy. 2019; 21: 1019-1024
        • Hay N
        • Sonenberg N.
        Upstream and downstream of mTOR.
        Genes Dev. 2004; 18: 1926-1945
        • Mittar D
        • Paramban R
        • McIntyre C.
        Flow cytometry and high-content imaging to identify markers of monocyte-macrophage differentiation.
        BD Biosci. 2011; 1: 1-20
        • Duran A
        • Amanchy R
        • Linares JF
        • Joshi J
        • Abu-Baker S
        • Porollo A
        • et al.
        p62 is a key regulator of nutrient sensing in the mTORC1 pathway.
        Mol Cell. 2011; 44: 134-146
        • Jo H
        • Mondal S
        • Tan D
        • Nagata E
        • Takizawa S
        • Sharma AK
        • et al.
        Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death.
        Proc Natl Acad Sci U S A. 2012; 109: 10581-10586
        • Rao G
        • Pierobon M
        • Kim IK
        • Hsu WH
        • Deng J
        • Moon YW
        • et al.
        Inhibition of AKT1 signaling promotes invasion and metastasis of non-small cell lung cancer cells with K-RAS or EGFR mutations.
        Sci Rep. 2017; 7: 7066
        • Uko NE
        • Güner OF
        • Matesic DF
        • Bowen JP.
        Akt pathway inhibitors.
        Curr Top Med Chem. 2020; 20: 883-900
        • You W
        • Wang Z
        • Li H
        • Shen H
        • Xu X
        • Jia G
        • et al.
        Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats.
        J Neurol Sci. 2016; 367: 224-231
        • Woodcock HV
        • Eley JD
        • Guillotin D
        • Platé M
        • Nanthakumar CB
        • Martufi M
        • et al.
        The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis.
        Nat Commun. 2019; 10: 6
        • Choi YJ
        • Park YJ
        • Park JY
        • Jeong HO
        • Kim DH
        • Ha YM
        • et al.
        Inhibitory effect of mTOR activator MHY1485 on autophagy: suppression of lysosomal fusion.
        PLoS One. 2012; 7: e43418
        • Vasandan AB
        • Jahnavi S
        • Shashank C
        • Prasad P
        • Kumar A
        • Prasanna SJ.
        Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism.
        Sci Rep. 2016; 6: 38308
        • Ylöstalo JH
        • Bartosh TJ
        • Coble K
        • Prockop DJ.
        Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype.
        Stem Cells. 2012; 30: 2283-2296
        • Prockop DJ.
        Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells.
        Matrix Biol. 2016; 51: 7-13
        • Lee HJ
        • Ko JH
        • Kim HJ
        • Jeong HJ
        • Oh JY.
        Mesenchymal stromal cells induce distinct myeloid-derived suppressor cells in inflammation.
        JCI Insight. 2020; 5e136059
        • Covarrubias AJ
        • Aksoylar HI
        • Horng T.
        Control of macrophage metabolism and activation by mTOR and Akt signaling.
        Semin Immunol. 2015; 27: 286-296
        • Covarrubias AJ
        • Aksoylar HI
        • Yu J
        • Snyder NW
        • Worth AJ
        • Iyer SS
        • et al.
        Akt-mTORC1 signaling regulates Acly to integrate metabolic input to control of macrophage activation.
        Elife. 2016; 5: e11612
        • Rückerl D
        • Jenkins SJ
        • Laqtom NN
        • Gallagher IJ
        • Sutherland TE
        • Duncan S
        • et al.
        Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo.
        Blood. 2012; 120: 2307-2316
        • Pengal RA
        • Ganesan LP
        • Wei G
        • Fang H
        • Ostrowski MC
        • Tridandapani S.
        Lipopolysaccharide-induced production of interleukin-10 is promoted by the serine/threonine kinase Akt.
        Mol Immunol. 2006; 43: 1557-1564
        • Arranz A
        • Doxaki C
        • Vergadi E
        • Martinez de la Torre Y
        • Vaporidi K
        • Lagoudaki ED
        • et al.
        Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization.
        Proc Natl Acad Sci U S A. 2012; 109: 9517-9522
        • Vergadi E
        • Vaporidi K
        • Theodorakis EE
        • Doxaki C
        • Lagoudaki E
        • Ieronymaki E
        • et al.
        Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice.
        J Immunol. 2014; 192: 394-406
        • Manning BD
        • Toker A.
        AKT/PKB signaling: navigating the network.
        Cell. 2017; 169: 381-405
        • Zhu L
        • Yang T
        • Li L
        • Sun L
        • Hou Y
        • Hu X
        • et al.
        TSC1 controls macrophage polarization to prevent inflammatory disease.
        Nat Commun. 2014; 5: 4696
        • Pan H
        • O'Brien TF
        • Zhang P
        • Zhong XP.
        The role of tuberous sclerosis complex 1 in regulating innate immunity.
        J Immunol. 2012; 188: 3658-3666
        • Byles V
        • Covarrubias AJ
        • Ben-Sahra I
        • Lamming DW
        • Sabatini DM
        • Manning BD
        • et al.
        The TSC-mTOR pathway regulates macrophage polarization.
        Nat Commun. 2013; 4: 2834
        • Han R
        • Gao J
        • Zhai H
        • Xiao J
        • Ding Y
        • Hao J.
        RAD001 (everolimus) attenuates experimental autoimmune neuritis by inhibiting the mTOR pathway, elevating Akt activity and polarizing M2 macrophages.
        Exp Neurol. 2016; 280: 106-114
        • Mercalli A
        • Calavita I
        • Dugnani E
        • Citro A
        • Cantarelli E
        • Nano R
        • et al.
        Rapamycin unbalances the polarization of human macrophages to M1.
        Immunology. 2013; 140: 179-190
        • Weichhart T
        • Haidinger M
        • Katholnig K
        • Kopecky C
        • Poglitsch M
        • Lassnig C
        • et al.
        Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells.
        Blood. 2011; 117: 4273-4283
        • Pearl D
        • Katsumura S
        • Amiri M
        • Tabatabaei N
        • Zhang X
        • Vinette V
        • et al.
        4E-BP-dependent translational control of Irf8 mediates adipose tissue macrophage inflammatory response.
        J Immunol. 2020; 204: 2392-2400
        • Wang J
        • Liu Y
        • Ding H
        • Shi X
        • Ren H.
        Mesenchymal stem cell-secreted prostaglandin E2 ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization.
        Stem Cell Res Ther. 2021; 12: 15
        • Kuehn HS
        • Jung MY
        • Beaven MA
        • Metcalfe DD
        • Gilfillan AM.
        Prostaglandin E2 activates and utilizes mTORC2 as a central signaling locus for the regulation of mast cell chemotaxis and mediator release.
        J Biol Chem. 2011; 286: 391-402
        • Nolta JA
        • Galipeau J
        • Phinney DG.
        Improving mesenchymal stem/stromal cell potency and survival: Proceedings from the International Society of Cell Therapy (ISCT) MSC preconference held in May 2018, Palais des Congrès de Montréal, Organized by the ISCT MSC Scientific Committee.
        Cytotherapy. 2020; 22: 123-126
        • Gordon S
        • Taylor PR.
        Monocyte and macrophage heterogeneity.
        Nat Rev Immunol. 2005; 5: 953-964