Advertisement
Full-length article|Articles in Press

Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis

  • Author Footnotes
    ⁎ These authors contributed equally to this work.
    Cajetan Immanuel Lang
    Correspondence
    Correspondence: Cajetan Immanuel Lang, MD, Department of Cardiology, Rostock University Medical Center, Ernst-Heydemann-Straße 6, 18057, Rostock 18057, Germany.
    Footnotes
    ⁎ These authors contributed equally to this work.
    Affiliations
    Department of Cardiology, Rostock University Medical Center, Rostock, Germany
    Search for articles by this author
  • Author Footnotes
    ⁎ These authors contributed equally to this work.
    Anika Dahmen
    Footnotes
    ⁎ These authors contributed equally to this work.
    Affiliations
    Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany

    Department of Life, Light and Matter, University of Rostock, Rostock, Germany
    Search for articles by this author
  • Praveen Vasudevan
    Affiliations
    Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany

    Department of Life, Light and Matter, University of Rostock, Rostock, Germany
    Search for articles by this author
  • Heiko Lemcke
    Affiliations
    Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany

    Department of Life, Light and Matter, University of Rostock, Rostock, Germany
    Search for articles by this author
  • Ralf Gäbel
    Affiliations
    Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany

    Department of Life, Light and Matter, University of Rostock, Rostock, Germany
    Search for articles by this author
  • Alper Öner
    Affiliations
    Department of Cardiology, Rostock University Medical Center, Rostock, Germany
    Search for articles by this author
  • Hüseyin Ince
    Affiliations
    Department of Cardiology, Rostock University Medical Center, Rostock, Germany
    Search for articles by this author
  • Author Footnotes
    ⁎ These authors contributed equally to this work.
    Robert David
    Footnotes
    ⁎ These authors contributed equally to this work.
    Affiliations
    Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany

    Department of Life, Light and Matter, University of Rostock, Rostock, Germany
    Search for articles by this author
  • Author Footnotes
    ⁎ These authors contributed equally to this work.
    Markus Wolfien
    Footnotes
    ⁎ These authors contributed equally to this work.
    Affiliations
    Institute of Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Search for articles by this author
  • Author Footnotes
    ⁎ These authors contributed equally to this work.
Published:March 06, 2023DOI:https://doi.org/10.1016/j.jcyt.2023.01.013

      Abstract

      Backgound Aims: This meta-analysis aims at summarizing the whole body of research on cell therapies for acute myocardial infarction (MI) in the mouse model to bring forward ongoing research in this field of regenerative medicine. Despite rather modest effects in clinical trials, pre-clinical studies continue to report beneficial effects of cardiac cell therapies for cardiac repair following acute ischemic injury. Results: The authors’ meta-analysis of data from 166 mouse studies comprising 257 experimental groups demonstrated a significant improvement in left ventricular ejection fraction of 10.21% after cell therapy compared with control animals. Subgroup analysis indicated that second-generation cell therapies such as cardiac progenitor cells and pluripotent stem cell derivatives had the highest therapeutic potential for minimizing myocardial damage post-MI. Conclusions: Whereas the vision of functional tissue replacement has been replaced by the concept of regional scar modulation in most of the investigated studies, rather basic methods for assessing cardiac function were most frequently used. Hence, future studies will highly benefit from integrating methods for assessment of regional wall properties to evolve a deeper understanding of how to modulate cardiac healing after acute MI.

      Graphical abstract

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Frangogiannis N.G.
        The inflammatory response in myocardial injury, repair, and remodelling.
        Nat Rev Cardiol. 2014; 11: 255-265
        • Kim G.H.
        • Uriel N.
        • Burkhoff D.
        Reverse remodelling and myocardial recovery in heart failure.
        Nat Rev Cardiol. 2018; 15: 83-96
        • Mamas M.A.
        • Sperrin M.
        • Watson M.C.
        • Coutts A.
        • Wilde K.
        • Burton C.
        • Kadam U.T.
        • Kwok C.S.
        • Clark A.B.
        • Murchie P.
        • Buchan I.
        • Hannaford P.C.
        • Myint P.K.
        Do patients have worse outcomes in heart failure than in cancer? A primary care-based cohort study with 10-year follow-up in Scotland.
        Eur J Heart Fail. 2017; 19: 1095-1104
        • Bolli R.
        Cell therapy for acute myocardial infarction: Requiescat in Pace.
        Eur Heart J. 2020; 41: 3711-3714
        • Mathur A.
        • Fernandez-Aviles F.
        • Bartunek J.
        • Belmans A.
        • Crea F.
        • Dowlut S.
        • Galinanes M.
        • Good M.C.
        • Hartikainen J.
        • Hauskeller C.
        • Janssens S.
        • Kala P.
        • Kastrup J.
        • Martin J.
        • Menasche P.
        • Sanz-Ruiz R.
        • Yla-Herttuala S.
        • Zeiher A.
        • Group B.
        The effect of intracoronary infusion of bone marrow-derived mononuclear cells on all-cause mortality in acute myocardial infarction: the BAMI trial.
        Eur Heart J. 2020; 41: 3702-3710
        • Bolli R.
        • Tang X.L.
        The sad plight of cell therapy for heart failure: causes and consequences.
        J Cardiovasc Aging. 2022; 2
        • Bolli R.
        • Solankhi M.
        • Tang X.L.
        • Kahlon A.
        Cell therapy in patients with heart failure: a comprehensive review and emerging concepts.
        Cardiovasc Res. 2022; 118: 951-976
        • Hansson E.M.
        • Lendahl U.
        Regenerative medicine for the treatment of heart disease.
        J Intern Med. 2013; 273: 235-245
        • Vagnozzi R.J.
        • Maillet M.
        • Sargent M.A.
        • Khalil H.
        • Johansen A.K.Z.
        • Schwanekamp J.A.
        • York A.J.
        • Huang V.
        • Nahrendorf M.
        • Sadayappan S.
        • Molkentin J.D.
        An acute immune response underlies the benefit of cardiac stem cell therapy.
        Nature. 2020; 577: 405-409
        • Huynh K.
        Stem cell therapy improves heart function by triggering an acute immune response.
        Nat Rev Cardiol. 2020; 17: 69
        • Viechtbauer W.
        Bias and efficiency of meta-analytic variance estimators in the random-effects model.
        J Educ Behav Stat. 2005; 30: 261-293
        • Dodge Y.
        The Oxford Dictionary of Statistical Terms.
        6th ed. Oxford University Press, Oxford, UK2003
        • Salanti G.
        • Del Giovane C.
        • Chaimani A.
        • Caldwell D.M.
        • Higgins J.P.
        Evaluating the quality of evidence from a network meta-analysis.
        PLoS One. 2014; 9: e99682
        • Duval S.
        • Tweedie R.
        • nonparametric A
        “Trim and fill” method of accounting for publication bias in meta-analysis.
        J Am Stat Assoc. 2000; 95: 89-98
        • Egger M.
        • Smith G.Davey
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Ioannidis J.P.
        • Trikalinos T.A.
        An exploratory test for an excess of significant findings.
        Clin Trials. 2007; 4: 245-253
        • Kossmeier M.
        • Tran U.
        • Voracek M.
        Power-Enhanced Funnel Plots for Meta-Analysis.
        Zeitschrift für Psychologie. 2020; 228: 43-49
      1. Schimmack U, The Replicability-Index: Quantifying Statistical Research Integrity, 2016. https://replicationindex.com/2016/01/31/a-revised-introduction-to-the-r-index/; Accessed 22.04.22.

        • Viechtbauer W.
        Conducting meta-analyses in R with the metafor package.
        Journal of Statistical Software. 2010; 36: 1-48
      2. Kossmeier M, Tran U, Voracek M. Visualizing meta-analytic data with R package metaviz, 2020. https://cran.r-project.org/web/packages/metaviz/index.html/; Accessed 28.03.22.

      3. Champely S, Ekstrom C, Dalgaard P, Gill J, Weibelzahl S, Anandkumar A, Ford C, Volcic R, De Rosario H. pwr: Basic functions for power analysis. 2017. https://cran.r-project.org/web/packages/pwr//; Accessed 28.03.22.

        • Tachibana A.
        • Santoso M.R.
        • Mahmoudi M.
        • Shukla P.
        • Wang L.
        • Bennett M.
        • Goldstone A.B.
        • Wang M.
        • Fukushi M.
        • Ebert A.D.
        • Woo Y.J.
        • Rulifson E.
        • Yang P.C.
        Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium.
        Circ Res. 2017; 121: e22-e36
        • Smits A.M.
        • van Laake L.W.
        • den Ouden K.
        • Schreurs C.
        • Szuhai K.
        • van Echteld C.J.
        • Mummery C.L.
        • Doevendans P.A.
        • Goumans M.J.
        Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium.
        Cardiovasc Res. 2009; 83: 527-535
        • Zhao Y.T.
        • Du J.
        • Chen Y.
        • Tang Y.
        • Qin G.
        • Lv G.
        • Zhuang S.
        • Zhao T.C.
        Inhibition of Oct 3/4 mitigates the cardiac progenitor-derived myocardial repair in infarcted myocardium.
        Stem Cell Res Ther. 2015; 6: 259
        • Wysoczynski M.
        • Guo Y.
        • Moore J.B.t.
        • Muthusamy S.
        • Li Q.
        • Nasr M.
        • Li H.
        • Nong Y.
        • Wu W.
        • Tomlin A.A.
        • Zhu X.
        • Hunt G.
        • Gumpert A.M.
        • Book M.J.
        • Khan A.
        • Tang X.L.
        • Bolli R.
        Myocardial Reparative Properties of Cardiac Mesenchymal Cells Isolated on the Basis of Adherence.
        J Am Coll Cardiol. 2017; 69: 1824-1838
        • Ludwig M.
        • Tolk A.
        • Skorska A.
        • Maschmeier C.
        • Gaebel R.
        • Lux C.A.
        • Steinhoff G.
        • David R.
        Exploiting AT2R to Improve CD117 Stem Cell Function In Vitro and In Vivo—Perspectives for Cardiac Stem Cell Therapy.
        Cell Physiol Biochem. 2015; 37: 77-93
        • Ahmed R.P.
        • Haider H.K.
        • Buccini S.
        • Li L.
        • Jiang S.
        • Ashraf M.
        Reprogramming of skeletal myoblasts for induction of pluripotency for tumor-free cardiomyogenesis in the infarcted heart.
        Circ Res. 2011; 109: 60-70
        • Li Y.
        • Tian S.
        • Lei I.
        • Liu L.
        • Ma P.
        • Wang Z.
        Transplantation of multipotent Isl1+ cardiac progenitor cells preserves infarcted heart function in mice.
        Am J Transl Res. 2017; 9: 1530-1542
        • Yue R.
        • Fu W.
        • Liao X.
        • Lan C.
        • Liao Q.
        • Li L.
        • Yang D.
        • Xia X.
        • Chen X.
        • Zeng C.
        • Wang W.E.
        Metformin promotes the survival of transplanted cardiosphere-derived cells thereby enhancing their therapeutic effect against myocardial infarction.
        Stem Cell Res Ther. 2017; 8: 17
        • Tang J.
        • Shen D.
        • Caranasos T.G.
        • Wang Z.
        • Vandergriff A.C.
        • Allen T.A.
        • Hensley M.T.
        • Dinh P.U.
        • Cores J.
        • Li T.S.
        • Zhang J.
        • Kan Q.
        • Cheng K.
        Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome.
        Nat Commun. 2017; 8: 13724
        • Dong J.
        • Zhang Z.
        • Huang H.
        • Mo P.
        • Cheng C.
        • Liu J.
        • Huang W.
        • Tian C.
        • Zhang C.
        • Li J.
        miR-10a rejuvenates aged human mesenchymal stem cells and improves heart function after myocardial infarction through KLF4.
        Stem Cell Res Ther. 2018; 9: 151
        • Feyen D.A.
        • Gaetani R.
        • Deddens J.
        • van Keulen D.
        • van Opbergen C.
        • Poldervaart M.
        • Alblas J.
        • Chamuleau S.
        • van Laake L.W.
        • Doevendans P.A.
        • Sluijter J.P.
        Gelatin Microspheres as Vehicle for Cardiac Progenitor Cells Delivery to the Myocardium.
        Adv Healthc Mater. 2016; 5: 1071-1079
        • Paulis L.E.
        • Klein A.M.
        • Ghanem A.
        • Geelen T.
        • Coolen B.F.
        • Breitbach M.
        • Zimmermann K.
        • Nicolay K.
        • Fleischmann B.K.
        • Roell W.
        • Strijkers G.J.
        Embryonic cardiomyocyte, but not autologous stem cell transplantation, restricts infarct expansion, enhances ventricular function, and improves long-term survival.
        PLoS One. 2013; 8: e61510
        • Ben-Mordechai T.
        • Holbova R.
        • Landa-Rouben N.
        • Harel-Adar T.
        • Feinberg M.S.
        • Abd Elrahman I.
        • Blum G.
        • Epstein F.H.
        • Silman Z.
        • Cohen S.
        • Leor J.
        Macrophage subpopulations are essential for infarct repair with and without stem cell therapy.
        J Am Coll Cardiol. 2013; 62: 1890-1901
        • Yamada S.
        • Nelson T.J.
        • Kane G.C.
        • Martinez-Fernandez A.
        • Crespo-Diaz R.J.
        • Ikeda Y.
        • Perez-Terzic C.
        • Terzic A.
        Induced pluripotent stem cell intervention rescues ventricular wall motion disparity, achieving biological cardiac resynchronization post-infarction.
        J Physiol. 2013; 591: 4335-4349
        • Nascimento D.Santos
        • Mosqueira D.
        • Sousa L.M.
        • Teixeira M.
        • Filipe M.
        • Resende T.P.
        • Araujo A.F.
        • Valente M.
        • Almeida J.
        • Martins J.P.
        • Santos J.M.
        • Barcia R.N.
        • Cruz P.
        • Cruz H.
        • Pinto-do O.P.
        Human umbilical cord tissue-derived mesenchymal stromal cells attenuate remodeling after myocardial infarction by proangiogenic, antiapoptotic, and endogenous cell-activation mechanisms.
        Stem Cell Res Ther. 2014; 5: 5
        • Yao Y.
        • Huang J.
        • Geng Y.
        • Qian H.
        • Wang F.
        • Liu X.
        • Shang M.
        • Nie S.
        • Liu N.
        • Du X.
        • Dong J.
        • Ma C.
        Paracrine action of mesenchymal stem cells revealed by single cell gene profiling in infarcted murine hearts.
        PLoS One. 2015; 10e0129164
        • Kim S.W.
        • Zhang H.Z.
        • Kim C.E.
        • Kim J.M.
        • Kim M.H.
        Amniotic mesenchymal stem cells with robust chemotactic properties are effective in the treatment of a myocardial infarction model.
        Int J Cardiol. 2013; 168: 1062-1069
        • Kim S.W.
        • Lee D.W.
        • Yu L.H.
        • Zhang H.Z.
        • Kim C.E.
        • Kim J.M.
        • Park T.H.
        • Cha K.S.
        • Seo S.Y.
        • Roh M.S.
        • Lee K.C.
        • Jung J.S.
        • Kim M.H.
        Mesenchymal stem cells overexpressing GCP-2 improve heart function through enhanced angiogenic properties in a myocardial infarction model.
        Cardiovasc Res. 2012; 95: 495-506
        • Pan Q.
        • Qin X.
        • Ma S.
        • Wang H.
        • Cheng K.
        • Song X.
        • Gao H.
        • Wang Q.
        • Tao R.
        • Wang Y.
        • Li X.
        • Xiong L.
        • Cao F.
        Myocardial protective effect of extracellular superoxide dismutase gene modified bone marrow mesenchymal stromal cells on infarcted mice hearts.
        Theranostics. 2014; 4: 475-486
        • Wang W.E.
        • Yang D.
        • Li L.
        • Wang W.
        • Peng Y.
        • Chen C.
        • Chen P.
        • Xia X.
        • Wang H.
        • Jiang J.
        • Liao Q.
        • Li Y.
        • Xie G.
        • Huang H.
        • Guo Y.
        • Ye L.
        • Duan D.D.
        • Chen X.
        • Houser S.R.
        • Zeng C.
        Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium.
        Circ Res. 2013; 113: 288-300
        • Mayorga M.E.
        • Kiedrowski M.
        • McCallinhart P.
        • Forudi F.
        • Ockunzzi J.
        • Weber K.
        • Chilian W.
        • Penn M.S.
        • Dong F.
        Role of SDF-1:CXCR4 in Impaired Post-Myocardial Infarction Cardiac Repair in Diabetes.
        Stem Cells Transl Med. 2018; 7: 115-124
        • Li G.
        • Chen J.
        • Zhang X.
        • He G.
        • Tan W.
        • Wu H.
        • Li R.
        • Chen Y.
        • Gu R.
        • Xie J.
        • Xu B.
        Cardiac repair in a mouse model of acute myocardial infarction with trophoblast stem cells.
        Sci Rep. 2017; 7: 44376
        • Li T.S.
        • Cheng K.
        • Malliaras K.
        • Smith R.R.
        • Zhang Y.
        • Sun B.
        • Matsushita N.
        • Blusztajn A.
        • Terrovitis J.
        • Kusuoka H.
        • Marban L.
        • Marban E.
        Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells.
        J Am Coll Cardiol. 2012; 59: 942-953
        • Xu J.Y.
        • Lee Y.K.
        • Ran X.
        • Liao S.Y.
        • Yang J.
        • Au K.W.
        • Lai W.H.
        • Esteban M.A.
        • Tse H.F.
        Generation of Induced Cardiospheres via Reprogramming of Skin Fibroblasts for Myocardial Regeneration.
        Stem Cells. 2016; 34: 2693-2706
        • Yao Y.
        • Sheng Z.
        • Li Y.
        • Fu C.
        • Ma G.
        • Liu N.
        • Chao J.
        • Chao L.
        Tissue kallikrein-modified human endothelial progenitor cell implantation improves cardiac function via enhanced activation of AKT and increased angiogenesis.
        Lab Invest. 2013; 93: 577-591
        • Nakamura Y.
        • Asakura Y.
        • Piras B.A.
        • Hirai H.
        • Tastad C.T.
        • Verma M.
        • Christ A.J.
        • Zhang J.
        • Yamazaki T.
        • Yoshiyama M.
        • Asakura A.
        Increased angiogenesis and improved left ventricular function after transplantation of myoblasts lacking the MyoD gene into infarcted myocardium.
        PLoS One. 2012; 7: e41736
        • Aonuma T.
        • Takehara N.
        • Maruyama K.
        • Kabara M.
        • Matsuki M.
        • Yamauchi A.
        • Kawabe J.
        • Hasebe N.
        Apoptosis-Resistant Cardiac Progenitor Cells Modified With Apurinic/Apyrimidinic Endonuclease/Redox Factor 1 Gene Overexpression Regulate Cardiac Repair After Myocardial Infarction.
        Stem Cells Transl Med. 2016; 5: 1067-1078
        • Shen H.
        • Cui G.
        • Li Y.
        • Ye W.
        • Sun Y.
        • Zhang Z.
        • Li J.
        • Xu G.
        • Zeng X.
        • Zhang Y.
        • Zhang W.
        • Huang Z.
        • Chen W.
        • Shen Z.
        Follistatin-like 1 protects mesenchymal stem cells from hypoxic damage and enhances their therapeutic efficacy in a mouse myocardial infarction model.
        Stem Cell Res Ther. 2019; 10: 17
        • Cho D.I.
        • Kang W.S.
        • Hong M.H.
        • Kang H.J.
        • Kim M.R.
        • Kim M.C.
        • Kim Y.S.
        • Ahn Y.
        The optimization of cell therapy by combinational application with apicidin-treated mesenchymal stem cells after myocardial infarction.
        Oncotarget. 2017; 8: 44281-44294
        • Huang F.
        • Li M.L.
        • Fang Z.F.
        • Hu X.Q.
        • Liu Q.M.
        • Liu Z.J.
        • Tang L.
        • Zhao Y.S.
        • Zhou S.H.
        Overexpression of MicroRNA-1 improves the efficacy of mesenchymal stem cell transplantation after myocardial infarction.
        Cardiology. 2013; 125: 18-30
        • Wang J.
        • Najjar A.
        • Zhang S.
        • Rabinovich B.
        • Willerson J.T.
        • Gelovani J.G.
        • Yeh E.T.
        Molecular imaging of mesenchymal stem cell: mechanistic insight into cardiac repair after experimental myocardial infarction.
        Circ Cardiovasc Imaging. 2012; 5: 94-101
        • Li N.
        • Pasha Z.
        • Ashraf M.
        Reversal of ischemic cardiomyopathy with Sca-1+ stem cells modified with multiple growth factors.
        PLoS One. 2014; 9: e93645
        • Liu Y.
        • Chen L.
        • Diaz A.D.
        • Benham A.
        • Xu X.
        • Wijaya C.S.
        • Fa'ak F.
        • Luo W.
        • Soibam B.
        • Azares A.
        • Yu W.
        • Lyu Q.
        • Stewart M.D.
        • Gunaratne P.
        • Cooney A.
        • McConnell B.K.
        • Schwartz R.J.
        Mesp1 Marked Cardiac Progenitor Cells Repair Infarcted Mouse Hearts.
        Sci Rep. 2016; 6: 31457
        • Kolossov E.
        • Bostani T.
        • Roell W.
        • Breitbach M.
        • Pillekamp F.
        • Nygren J.M.
        • Sasse P.
        • Rubenchik O.
        • Fries J.W.
        • Wenzel D.
        • Geisen C.
        • Xia Y.
        • Lu Z.
        • Duan Y.
        • Kettenhofen R.
        • Jovinge S.
        • Bloch W.
        • Bohlen H.
        • Welz A.
        • Hescheler J.
        • Jacobsen S.E.
        • Fleischmann B.K.
        Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium.
        J Exp Med. 2006; 203: 2315-2327
        • Li Z.
        • Lee A.
        • Huang M.
        • Chun H.
        • Chung J.
        • Chu P.
        • Hoyt G.
        • Yang P.
        • Rosenberg J.
        • Robbins R.C.
        • Wu J.C.
        Imaging survival and function of transplanted cardiac resident stem cells.
        J Am Coll Cardiol. 2009; 53: 1229-1240
        • Christoforou N.
        • Oskouei B.N.
        • Esteso P.
        • Hill C.M.
        • Zimmet J.M.
        • Bian W.
        • Bursac N.
        • Leong K.W.
        • Hare J.M.
        • Gearhart J.D.
        Implantation of mouse embryonic stem cell-derived cardiac progenitor cells preserves function of infarcted murine hearts.
        PLoS One. 2010; 5: e11536
        • Lang C.I.
        • Wolfien M.
        • Langenbach A.
        • Muller P.
        • Wolkenhauer O.
        • Yavari A.
        • Ince H.
        • Steinhoff G.
        • Krause B.J.
        • David R.
        • Glass A.
        Cardiac Cell Therapies for the Treatment of Acute Myocardial Infarction: A Meta-Analysis from Mouse Studies.
        Cell Physiol Biochem. 2017; 42: 254-268
        • Zwetsloot P.P.
        • Vegh A.M.
        • Jansen of Lorkeers S.J.
        • van Hout G.P.
        • Currie G.L.
        • Sena E.S.
        • Gremmels H.
        • Buikema J.W.
        • Goumans M.J.
        • Macleod M.R.
        • Doevendans P.A.
        • Chamuleau S.A.
        • Sluijter J.P.
        Cardiac Stem Cell Treatment in Myocardial Infarction: A Systematic Review and Meta-Analysis of Preclinical Studies.
        Circ Res. 2016; 118: 1223-1232
        • Bujak M.
        • Kweon H.J.
        • Chatila K.
        • Li N.
        • Taffet G.
        • Frangogiannis N.G.
        Aging-related defects are associated with adverse cardiac remodeling in a mouse model of reperfused myocardial infarction.
        J Am Coll Cardiol. 2008; 51: 1384-1392
        • Patten R.D.
        • Hall-Porter M.R.
        Small animal models of heart failure: development of novel therapies, past and present.
        Circ Heart Fail. 2009; 2: 138-144
        • Lang C.
        • Lehner S.
        • Todica A.
        • Boening G.
        • Franz W.M.
        • Bartenstein P.
        • Hacker M.
        • David R.
        Positron emission tomography based in vivo imaging of early phase stem cell retention after intramyocardial delivery in the mouse model.
        Eur J Nucl Med Mol Imaging. 2013; 40: 1730-1738
        • Terrovitis J.
        • Lautamaki R.
        • Bonios M.
        • Fox J.
        • Engles J.M.
        • Yu J.
        • Leppo M.K.
        • Pomper M.G.
        • Wahl R.L.
        • Seidel J.
        • Tsui B.M.
        • Bengel F.M.
        • Abraham M.R.
        • Marban E.
        Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery.
        J Am Coll Cardiol. 2009; 54: 1619-1626
        • Frangogiannis N.G.
        The mechanistic basis of infarct healing.
        Antioxid Redox Signal. 2006; 8: 1907-1939
        • Aurora A.B.
        • Olson E.N.
        Immune modulation of stem cells and regeneration.
        Cell Stem Cell. 2014; 15: 14-25
        • Ben-Mordechai T.
        • Palevski D.
        • Glucksam-Galnoy Y.
        • Elron-Gross I.
        • Margalit R.
        • Leor J.
        Targeting macrophage subsets for infarct repair.
        J Cardiovasc Pharmacol Ther. 2015; 20: 36-51
        • Rischpler C.
        • Dirschinger R.J.
        • Nekolla S.G.
        • Kossmann H.
        • Nicolosi S.
        • Hanus F.
        • van Marwick S.
        • Kunze K.P.
        • Meinicke A.
        • Gotze K.
        • Kastrati A.
        • Langwieser N.
        • Ibrahim T.
        • Nahrendorf M.
        • Schwaiger M.
        • Laugwitz K.L.
        Prospective Evaluation of 18F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome.
        Circ Cardiovasc Imaging. 2016; 9e004316
        • Hasan A.S.
        • Luo L.
        • Yan C.
        • Zhang T.X.
        • Urata Y.
        • Goto S.
        • Mangoura S.A.
        • Abdel-Raheem M.H.
        • Zhang S.
        • Li T.S.
        Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment.
        PLoS One. 2016; 11e0165255
        • Vasudevan P.
        • Wolfien M.
        • Lemcke H.
        • Lang C.I.
        • Skorska A.
        • Gaebel R.
        • et al.
        Cardiomyocyte Transplantation after Myocardial Infarction Alters the Immune Response in the Heart.
        Cells. 2020; 9 (1–18): 1825
        • Vasudevan P.
        • Gaebel R.
        • Doering P.
        • Mueller P.
        • Lemcke H.
        • Stenzel J.
        • Lindner T.
        • Kurth J.
        • Steinhoff G.
        • Vollmar B.
        • Krause B.J.
        • Ince H.
        • David R.
        • Lang C.I.
        18F-FDG PET-Based Imaging of Myocardial Inflammation Predicts a Functional Outcome Following Transplantation of mESC-Derived Cardiac Induced Cells in a Mouse Model of Myocardial Infarction.
        Cells. 2019; 8
        • Richardson W.J.
        • Clarke S.A.
        • Quinn T.A.
        • Holmes J.W.
        Physiological Implications of Myocardial Scar Structure.
        Compr Physiol. 2015; 5: 1877-1909
        • van Slochteren F.J.
        • Teske A.J.
        • van der Spoel T.I.
        • Koudstaal S.
        • Doevendans P.A.
        • Sluijter J.P.
        • Cramer M.J.
        • Chamuleau S.A.
        Advanced measurement techniques of regional myocardial function to assess the effects of cardiac regenerative therapy in different models of ischaemic cardiomyopathy.
        Eur Heart J Cardiovasc Imaging. 2012; 13: 808-818
        • Yokota T.
        • McCourt J.
        • Ma F.
        • Ren S.
        • Li S.
        • Kim T.H.
        • Kurmangaliyev Y.Z.
        • Nasiri R.
        • Ahadian S.
        • Nguyen T.
        • Tan X.H.M.
        • Zhou Y.
        • Wu R.
        • Rodriguez A.
        • Cohn W.
        • Wang Y.
        • Whitelegge J.
        • Ryazantsev S.
        • Khademhosseini A.
        • Teitell M.A.
        • Chiou P.Y.
        • Birk D.E.
        • Rowat A.C.
        • Crosbie R.H.
        • Pellegrini M.
        • Seldin M.
        • Lusis A.J.
        • Deb A.
        Type V Collagen in Scar Tissue Regulates the Size of Scar after Heart Injury.
        Cell. 2020; 182: 545-562.e23
        • Lehner S.
        • Todica A.
        • Brunner S.
        • Uebleis C.
        • Wang H.
        • Wangler C.
        • Herbach N.
        • Herrler T.
        • Boning G.
        • Laubender R.P.
        • Cumming P.
        • Schirrmacher R.
        • Franz W.
        • Hacker M.
        Temporal changes in phosphatidylserine expression and glucose metabolism after myocardial infarction: an in vivo imaging study in mice.
        Mol Imaging. 2012; 11: 461-470
        • Cochain C.
        • Channon K.M.
        • Silvestre J.S.
        Angiogenesis in the infarcted myocardium.
        Antioxid Redox Signal. 2013; 18: 1100-1113
        • Bajpai G.
        • Bredemeyer A.
        • Li W.
        • Zaitsev K.
        • Koenig A.L.
        • Lokshina I.
        • Mohan J.
        • Ivey B.
        • Hsiao H.M.
        • Weinheimer C.
        • Kovacs A.
        • Epelman S.
        • Artyomov M.
        • Kreisel D.
        • Lavine K.J.
        Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury.
        Circ Res. 2019; 124: 263-278
        • Dick S.A.
        • Macklin J.A.
        • Nejat S.
        • Momen A.
        • Clemente-Casares X.
        • Althagafi M.G.
        • Chen J.
        • Kantores C.
        • Hosseinzadeh S.
        • Aronoff L.
        • Wong A.
        • Zaman R.
        • Barbu I.
        • Besla R.
        • Lavine K.J.
        • Razani B.
        • Ginhoux F.
        • Husain M.
        • Cybulsky M.I.
        • Robbins C.S.
        • Epelman S.
        Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction.
        Nat Immunol. 2019; 20: 29-39
        • Epelman S.
        • Lavine K.J.
        • Beaudin A.E.
        • Sojka D.K.
        • Carrero J.A.
        • Calderon B.
        • Brija T.
        • Gautier E.L.
        • Ivanov S.
        • Satpathy A.T.
        • Schilling J.D.
        • Schwendener R.
        • Sergin I.
        • Razani B.
        • Forsberg E.C.
        • Yokoyama W.M.
        • Unanue E.R.
        • Colonna M.
        • Randolph G.J.
        • Mann D.L.
        Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.
        Immunity. 2014; 40: 91-104
        • Heidt T.
        • Courties G.
        • Dutta P.
        • Sager H.B.
        • Sebas M.
        • Iwamoto Y.
        • Sun Y.
        • Da Silva N.
        • Panizzi P.
        • van der Laan A.M.
        • Swirski F.K.
        • Weissleder R.
        • Nahrendorf M.
        Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction.
        Circ Res. 2014; 115: 284-295
        • Lavine K.J.
        • Epelman S.
        • Uchida K.
        • Weber K.J.
        • Nichols C.G.
        • Schilling J.D.
        • Ornitz D.M.
        • Randolph G.J.
        • Mann D.L.
        Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart.
        Proc Natl Acad Sci U S A. 2014; 111: 16029-16034
        • Swirski F.K.
        • Nahrendorf M.
        Cardioimmunology: the immune system in cardiac homeostasis and disease.
        Nat Rev Immunol. 2018; 18: 733-744
        • Sager H.B.
        • Kessler T.
        • Schunkert H.
        Monocytes and macrophages in cardiac injury and repair.
        J Thorac Dis. 2017; 9: S30-S35
        • Nahrendorf M.
        • Swirski F.K.
        • Aikawa E.
        • Stangenberg L.
        • Wurdinger T.
        • Figueiredo J.L.
        • Libby P.
        • Weissleder R.
        • Pittet M.J.
        The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions.
        J Exp Med. 2007; 204: 3037-3047
        • Epelman S.
        • Liu P.P.
        • Mann D.L.
        Role of innate and adaptive immune mechanisms in cardiac injury and repair.
        Nat Rev Immunol. 2015; 15: 117-129
        • Gaebel R.
        • Furlani D.
        • Sorg H.
        • Polchow B.
        • Frank J.
        • Bieback K.
        • Wang W.
        • Klopsch C.
        • Ong L.L.
        • Li W.
        • Ma N.
        • Steinhoff G.
        Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration.
        PLoS One. 2011; 6: e15652
        • Nussbaum J.
        • Minami E.
        • Laflamme M.A.
        • Virag J.A.
        • Ware C.B.
        • Masino A.
        • Muskheli V.
        • Pabon L.
        • Reinecke H.
        • Murry C.E.
        Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response.
        FASEB J. 2007; 21: 1345-1357
        • Menasche P.
        • Alfieri O.
        • Janssens S.
        • McKenna W.
        • Reichenspurner H.
        • Trinquart L.
        • Vilquin J.T.
        • Marolleau J.P.
        • Seymour B.
        • Larghero J.
        • Lake S.
        • Chatellier G.
        • Solomon S.
        • Desnos M.
        • Hagege A.A.
        The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation.
        Circulation. 2008; 117: 1189-1200
        • Asahara T.
        • Murohara T.
        • Sullivan A.
        • Silver M.
        • van der Zee R.
        • Li T.
        • Witzenbichler B.
        • Schatteman G.
        • Isner J.M.
        Isolation of putative progenitor endothelial cells for angiogenesis.
        Science. 1997; 275: 964-967
        • Li Z.
        • Solomonidis E.G.
        • Meloni M.
        • Taylor R.S.
        • Duffin R.
        • Dobie R.
        • Magalhaes M.S.
        • Henderson B.E.P.
        • Louwe P.A.
        • D'Amico G.
        • Hodivala-Dilke K.M.
        • Shah A.M.
        • Mills N.L.
        • Simons B.D.
        • Gray G.A.
        • Henderson N.C.
        • Baker A.H.
        • Brittan M.
        Single-cell transcriptome analyses reveal novel targets modulating cardiac neovascularization by resident endothelial cells following myocardial infarction.
        Eur Heart J. 2019; 40: 2507-2520
        • Mauritz C.
        • Schwanke K.
        • Reppel M.
        • Neef S.
        • Katsirntaki K.
        • Maier L.S.
        • Nguemo F.
        • Menke S.
        • Haustein M.
        • Hescheler J.
        • Hasenfuss G.
        • Martin U.
        Generation of functional murine cardiac myocytes from induced pluripotent stem cells.
        Circulation. 2008; 118: 507-517
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • Baker M.
        • Limana F.
        • Chimenti S.
        • Kasahara H.
        • Rota M.
        • Musso E.
        • Urbanek K.
        • Leri A.
        • Kajstura J.
        • Nadal-Ginard B.
        • Anversa P.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • Smits A.M.
        • van Vliet P.
        • Metz C.H.
        • Korfage T.
        • Sluijter J.P.
        • Doevendans P.A.
        • Goumans M.J.
        Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology.
        Nat Protoc. 2009; 4: 232-243
        • Smith R.R.
        • Barile L.
        • Cho H.C.
        • Leppo M.K.
        • Hare J.M.
        • Messina E.
        • Giacomello A.
        • Abraham M.R.
        • Marban E.
        Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens.
        Circulation. 2007; 115: 896-908
        • Messina E.
        • De Angelis L.
        • Frati G.
        • Morrone S.
        • Chimenti S.
        • Fiordaliso F.
        • Salio M.
        • Battaglia M.
        • Latronico M.V.
        • Coletta M.
        • Vivarelli E.
        • Frati L.
        • Cossu G.
        • Giacomello A.
        Isolation and expansion of adult cardiac stem cells from human and murine heart.
        Circ Res. 2004; 95: 911-921
        • Gaetani R.
        • Feyen D.A.
        • Doevendans P.A.
        • Gremmels H.
        • Forte E.
        • Fledderus J.O.
        • Ramjankhan F.Z.
        • Messina E.
        • Sussman M.A.
        • Giacomello A.
        • Sluijter J.P.
        Different types of cultured human adult cardiac progenitor cells have a high degree of transcriptome similarity.
        J Cell Mol Med. 2014; 18: 2147-2151
        • van Berlo J.H.
        • Kanisicak O.
        • Maillet M.
        • Vagnozzi R.J.
        • Karch J.
        • Lin S.C.
        • Middleton R.C.
        • Marban E.
        • Molkentin J.D.
        c-kit+ cells minimally contribute cardiomyocytes to the heart.
        Nature. 2014; 509: 337-341
        • Oskouei B.N.
        • Lamirault G.
        • Joseph C.
        • Treuer A.V.
        • Landa S.
        • Da Silva J.
        • Hatzistergos K.
        • Dauer M.
        • Balkan W.
        • McNiece I.
        • Hare J.M.
        Increased potency of cardiac stem cells compared with bone marrow mesenchymal stem cells in cardiac repair.
        Stem Cells Transl Med. 2012; 1: 116-124
        • Bai Y.
        • Sun T.
        • Ye P.
        Age, gender and diabetic status are associated with effects of bone marrow cell therapy on recovery of left ventricular function after acute myocardial infarction: a systematic review and meta-analysis.
        Ageing Res Rev. 2010; 9: 418-423
        • Regitz-Zagrosek V.
        • Kararigas G.
        Mechanistic Pathways of Sex Differences in Cardiovascular Disease.
        Physiol Rev. 2017; 97: 1-37
        • Kessler E.L.
        • Rivaud M.R.
        • Vos M.A.
        • van Veen T.A.B.
        Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease.
        Biol Sex Differ. 2019; 10: 7
        • Barcena de Arellano M.L.
        • Pozdniakova S.
        • Kuhl A.A.
        • Baczko I.
        • Ladilov Y.
        • Regitz-Zagrosek V.
        Sex differences in the aging human heart: decreased sirtuins, pro-inflammatory shift and reduced anti-oxidative defense.
        Aging (Albany NY). 2019; 11: 1918-1933
        • Stone G.
        • Choi A.
        • Meritxell O.
        • Gorham J.
        • Heydarpour M.
        • Seidman C.E.
        • Seidman J.G.
        • Aranki S.F.
        • Body S.C.
        • Carey V.J.
        • Raby B.A.
        • Stranger B.E.
        • Muehlschlegel J.D.
        Sex differences in gene expression in response to ischemia in the human left ventricular myocardium.
        Hum Mol Genet. 2019; 28: 1682-1693
        • Jansen Of Lorkeers S.J.
        • Eding J.E.
        • Vesterinen H.M.
        • van der Spoel T.I.
        • Sena E.S.
        • Duckers H.J.
        • Doevendans P.A.
        • Macleod M.R.
        • Chamuleau S.A.
        Similar effect of autologous and allogeneic cell therapy for ischemic heart disease: systematic review and meta-analysis of large animal studies.
        Circ Res. 2015; 116: 80-86
        • Hare J.M.
        • Fishman J.E.
        • Gerstenblith G.
        • DiFede Velazquez D.L.
        • Zambrano J.P.
        • Suncion V.Y.
        • Tracy M.
        • Ghersin E.
        • Johnston P.V.
        • Brinker J.A.
        • Breton E.
        • Davis-Sproul J.
        • Schulman I.H.
        • Byrnes J.
        • Mendizabal A.M.
        • Lowery M.H.
        • Rouy D.
        • Altman P.
        • Wong Po Foo C.
        • Ruiz P.
        • Amador A.
        • Da Silva J.
        • McNiece I.K.
        • Heldman A.W.
        • George R.
        • Lardo A.
        Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial.
        JAMA. 2012; 308: 2369-2379
        • van der Spoel T.I.
        • Jansen of Lorkeers S.J.
        • Agostoni P.
        • van Belle E.
        • Gyongyosi M.
        • Sluijter J.P.
        • Cramer M.J.
        • Doevendans P.A.
        • Chamuleau S.A.
        Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease.
        Cardiovasc Res. 2011; 91: 649-658
        • Schaefer A.
        • Zwadlo C.
        • Fuchs M.
        • Meyer G.P.
        • Lippolt P.
        • Wollert K.C.
        • Drexler H.
        Long-term effects of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: 5-year results from the randomized-controlled BOOST trial–an echocardiographic study.
        Eur J Echocardiogr. 2010; 11: 165-171
        • Shen D.
        • Cheng K.
        • Marban E.
        Dose-dependent functional benefit of human cardiosphere transplantation in mice with acute myocardial infarction.
        J Cell Mol Med. 2012; 16: 2112-2116
        • Bolli R.
        • Kahlon A.
        Time to end the war on cell therapy.
        Eur J Heart Fail. 2020; 22: 893-897
        • Tompkins B.A.
        • Balkan W.
        • Winkler J.
        • Gyongyosi M.
        • Goliasch G.
        • Fernandez-Aviles F.
        • Hare J.M.
        Preclinical Studies of Stem Cell Therapy for Heart Disease.
        Circ Res. 2018; 122: 1006-1020
        • Konstam M.A.
        • Kramer D.G.
        • Patel A.R.
        • Maron M.S.
        • Udelson J.E.
        Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment.
        JACC Cardiovasc Imaging. 2011; 4: 98-108
        • Fernandez-Aviles F.
        • Sanz-Ruiz R.
        • Climent A.M.
        • Badimon L.
        • Bolli R.
        • Charron D.
        • Fuster V.
        • Janssens S.
        • Kastrup J.
        • Kim H.S.
        • Luscher T.F.
        • Martin J.F.
        • Menasche P.
        • Simari R.D.
        • Stone G.W.
        • Terzic A.
        • Willerson J.T.
        • Wu J.C.
        Global position paper on cardiovascular regenerative medicine.
        Eur Heart J. 2017; 38: 2532-2546