Abstract
Key Words
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to CytotherapyReferences
- Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells.Proc Natl Acad Sci U S A. 1994; 91: 6064-6068https://doi.org/10.1073/pnas.91.13.6064
- Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain.Proc Natl Acad Sci U S A. 1996; 93: 1156-1160https://doi.org/10.1073/PNAS.93.3.1156
- Origins of programmable nucleases for genome engineering.J Mol Biol. 2016; 428: 963-989https://doi.org/10.1016/J.JMB.2015.10.014
- Multiplex genome engineering using CRISPR/Cas systems.Science. 2013; 339: 819-823https://doi.org/10.1126/SCIENCE.1231143
- RNA-guided human genome engineering via Cas9.Science. 2013; 339: 823-826https://doi.org/10.1126/SCIENCE.1232033
- Therapeutic genome editing: prospects and challenges.Nat Med. 2015; 21: 121-131https://doi.org/10.1038/NM.3793
- Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product.J Bacteriol. 1987; 169: 5429-5433https://doi.org/10.1128/JB.169.12.5429-5433.1987
- Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria.Mol Microbiol. 2000; 36: 244-246https://doi.org/10.1046/J.1365-2958.2000.01838.X
- Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites.Mol Microbiol. 1993; 9: 613-621https://doi.org/10.1111/J.1365-2958.1993.TB01721.X
- CRISPR provides acquired resistance against viruses in prokaryotes.Science. 2007; 315: 1709-1712https://doi.org/10.1126/SCIENCE.1138140
- A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science. 2012; 337: 816-821https://doi.org/10.1126/SCIENCE.1225829
- Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease.J Biol Chem. 2014; 289: 13284-13294https://doi.org/10.1074/JBC.M113.539726
- Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.Sci Transl Med. 2016; 8: 360ra134https://doi.org/10.1126/scitranslmed.aaf9336
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, et al. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells 2016. https://doi.org/10.1038/nature20134.
- Gene correction for SCID-X1 in long-term hematopoietic stem cells.Nat Commun. 2019; 10https://doi.org/10.1038/s41467-019-09614-y
- Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott–Aldrich syndrome.Nat Commun. 2020; 11https://doi.org/10.1038/s41467-020-17626-2
- CRISPR/Cas9-mediated correction of the sickle mutation in human CD34+ cells.Mol Ther. 2016; 24: 1561-1569https://doi.org/10.1038/MT.2016.148
- Programmable base editing of T to G C in genomic DNA without DNA cleavage.Nature. 2017; 551: 464-471https://doi.org/10.1038/nature24644
- Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage.Nature. 2016; 533: 420-424https://doi.org/10.1038/nature17946
- Search-and-replace genome editing without double-strand breaks or donor DNA.Nature. 2019; 576: 149-157https://doi.org/10.1038/s41586-019-1711-4
- Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy.N Engl J Med. 1957; 257: 491-496https://doi.org/10.1056/nejm195709122571102
- Gene therapy using haematopoietic stem and progenitor cells.Nat Rev Genet. 2021; 22: 216-234https://doi.org/10.1038/S41576-020-00298-5
- Advances in the gene therapy of monogenic blood cell diseases.Clin Genet. 2020; 97: 89-102https://doi.org/10.1111/cge.13593
- Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease.Science. 2000; 288: 669-672https://doi.org/10.1126/SCIENCE.288.5466.669
- Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning.Science. 2002; 296: 2410-2413https://doi.org/10.1126/SCIENCE.1070104
- Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.J Clin Invest. 2008; 118: 3143-3150https://doi.org/10.1172/JCI35798
- LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.Science (80-). 2003; 302: 415-419https://doi.org/10.1126/science.1088547
- Gene therapy in patients with transfusion-dependent β-thalassemia.N Engl J Med. 2018; 378: 1479-1493https://doi.org/10.1056/NEJMOA1705342
- Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia.Nat Med. 2019; 25: 234-241https://doi.org/10.1038/S41591-018-0301-6
- Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia.Nat Med. 2019; 25: 1396-1401https://doi.org/10.1038/S41591-019-0550-Z
- Gene therapy in a patient with sickle cell disease.N Engl J Med. 2017; 376: 848-855https://doi.org/10.1056/NEJMOA1609677
- Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency.Sci Transl Med. 2016; 8https://doi.org/10.1126/SCITRANSLMED.AAD8856
- B-cell reconstitution after lentiviral vector-mediated gene therapy in patients with Wiskott-Aldrich syndrome.J Allergy Clin Immunol. 2015; 136 (692-702.e2)https://doi.org/10.1016/J.JACI.2015.01.035
- Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome.Science. 2013; 341https://doi.org/10.1126/SCIENCE.1233151
- Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency.N Engl J Med. 2021; 384: 2002-2013https://doi.org/10.1056/NEJMOA2027675
- Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1.N Engl J Med. 2019; 380: 1525-1534https://doi.org/10.1056/NEJMOA1815408
- Post-transcriptional genetic silencing of BCL11A to treat sickle cell disease.N Engl J Med. 2021; 384: 205-215https://doi.org/10.1056/NEJMOA2029392
- Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy.Science. 2009; 326: 818-823https://doi.org/10.1126/SCIENCE.1171242
- Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.Nature. 2019; 571: 219-225https://doi.org/10.1038/S41586-019-1323-Z
- TALEN-mediated gene editing of HBG in human hematopoietic stem cells leads to therapeutic fetal hemoglobin induction.Mol Ther Methods Clin Dev. 2019; 12: 175-183https://doi.org/10.1016/J.OMTM.2018.12.008
- Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia.Proc Natl Acad Sci U S A. 2016; 113: 10661-10665https://doi.org/10.1073/PNAS.1612075113/SUPPL_FILE/PNAS.201612075SI.PDF
Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis n.d. https://doi.org/10.1038/nature15521.
- High-level correction of the sickle mutation is amplified in vivo during erythroid differentiation.IScience. 2022; 25https://doi.org/10.1016/J.ISCI.2022.104374
- CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia.N Engl J Med. 2021; 384: 252-260https://doi.org/10.1056/NEJMOA2031054
- Primary immunodeficiency.Allergy Asthma Clin Immunol. 2011; 7https://doi.org/10.1186/1710-1492-7-s1-s11
- International union of immunological societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity.J Clin Immunol. 2018; 38: 96-128https://doi.org/10.1007/s10875-017-0464-9
- Primary immunodeficiencies: novel genes and unusual presentations.Hematology Am Soc Hematol Educ Program. 2019; 6: 443-448
- Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee.J Allergy Clin Immunol. 2007; 120: 776-794https://doi.org/10.1016/j.jaci.2007.08.053
- Primary immunodeficiency diseases: Current and emerging therapeutics.Front Immunol. 2017; 8https://doi.org/10.3389/fimmu.2017.00937
- Preclinical modeling highlights the therapeutic potential of hematopoietic stem cell gene editing for correction of SCID-X1.Sci Transl Med. 2017; 9: eaan0820
- Differential transgene silencing of myeloid-specific promoters in the AAVS1 safe harbor locus of induced pluripotent stem cell-derived myeloid cells.Hum Gene Ther. 2020; 31: 199-210https://doi.org/10.1089/hum.2019.194
- Gene editing for the treatment of primary immunodeficiency diseases.Hum Gene Ther. 2021; 32: 43-51https://doi.org/10.1089/hum.2020.185
- Thymic lymphoproliferative disease after successful correction of CD40 ligand deficiency by gene transfer in mice.Nat Med. 1998; 4: 1253-1260https://doi.org/10.1038/3233
Sacco MG, Ungari M, Catò EM, Villa A, Strina D, Notarangelo LD, et al. Lymphoid abnormalities in CD40 ligand transgenic mice suggest the need for tight regulation in gene therapy approaches to hyper immunoglobulin M (IgM) syndrome. vol. 7. 2000.
- Site-specific gene editing of human hematopoietic stem cells for X-linked hyper-IgM syndrome.Cell Rep. 2018; 23: 2606-2616https://doi.org/10.1016/j.celrep.2018.04.103
Goodwin M, Lee E, Lakshmanan U, Shipp S, Froessl L, Barzaghi F, et al. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. 2020.
- Pathophysiology and management of inherited bone marrow failure syndromes.Blood Rev. 2010; 24: 101-122https://doi.org/10.1016/J.BLRE.2010.03.002
- Engraftment and in vivo proliferation advantage of gene-corrected mobilized CD34 + cells from Fanconi anemia patients.Blood. 2017; 130: 1535-1542https://doi.org/10.1182/BLOOD-2017-03-774174
- CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway.Nat Genet. 2018; 50: 1132-1139https://doi.org/10.1038/s41588-018-0174-0
- CRISPR/Cas9 targeted gene editing and cellular engineering in Fanconi anemia.Stem Cells Dev. 2016; 25: 1591-1603https://doi.org/10.1089/SCD.2016.0149
- Fanconi anemia gene editing by the CRISPR/Cas9 system.Hum Gene Ther. 2015; 26: 114-126https://doi.org/10.1089/HUM.2014.111
- CRISPR/Cas9-mediated correction of the FANCD1 gene in primary patient cells.Int J Mol Sci. 2017; 18https://doi.org/10.3390/ijms18061269
- NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with Fanconi anemia.Cell Stem Cell. 2019; 25 (607–621.e7)https://doi.org/10.1016/J.STEM.2019.08.016
- Functional analysis of single amino-acid mutations in the thrombopoietin-receptor Mpl underlying congenital amegakaryocytic thrombocytopenia.Br J Haematol. 2008; 141: 808-813https://doi.org/10.1111/J.1365-2141.2008.07139.X
- Gene editing rescue of a novel MPL mutant associated with congenital amegakaryocytic thrombocytopenia.Blood Adv. 2017; 1: 1815-1826https://doi.org/10.1182/BLOODADVANCES.2016002915
- Severe congenital neutropenias.Nat Rev Dis Prim. 2017; 3https://doi.org/10.1038/NRDP.2017.32
- CRISPR/Cas9-mediated ELANE knockout enables neutrophilic maturation of primary hematopoietic stem and progenitor cells and induced pluripotent stem cells of severe congenital neutropenia patients.Haematologica. 2020; 105: 598-609https://doi.org/10.3324/HAEMATOL.2019.221804
- Dissecting ELANE neutropenia pathogenicity by human HSC gene editing.Cell Stem Cell. 2021; 28 (833-845.e5)https://doi.org/10.1016/J.STEM.2020.12.015
- Lessons from the cancer genome.Cell. 2013; 153: 17-37https://doi.org/10.1016/J.CELL.2013.03.002
- Oncolytic viruses: a new class of immunotherapy drugs.Nat Rev Drug Discov. 2015; 14: 642-662https://doi.org/10.1038/NRD4663
- From benchtop to bedside: A review of oncolytic virotherapy.Biomedicines. 2016; 4https://doi.org/10.3390/BIOMEDICINES4030018
- Developing oncolytic herpes simplex virus type 1 through UL39 knockout by CRISPR-Cas9.Iran J Basic Med Sci. 2020; 23: 937-944https://doi.org/10.22038/IJBMS.2020.43864.10286
- Generation and validation of recombinant herpes simplex type 1 viruses (HSV-1) using CRISPR/Cas9 genetic disruption.Methods Enzymol. 2020; 635: 167-184https://doi.org/10.1016/BS.MIE.2019.08.011
- Oncolytic virus-mediated RAS targeting in rhabdomyosarcoma.Mol Ther Oncolytics. 2018; 11: 52-61https://doi.org/10.1016/J.OMTO.2018.09.001
- CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients.Sci Rep. 2016; 6https://doi.org/10.1038/SREP20070
- B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells.J Exp Med. 2001; 193: 839-845https://doi.org/10.1084/JEM.193.7.839
- Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion.Nat Med. 2002; 8: 793-800https://doi.org/10.1038/NM730
- Safety and feasibility of CRISPR-edited T cells in patients with refractory non–small-cell lung cancer.Nat Med. 2020; 26: 732-740https://doi.org/10.1038/S41591-020-0840-5
- Cornerstones of CRISPR-Cas in drug discovery and therapy.Nat Rev Drug Discov. 2017; 16: 89-100https://doi.org/10.1038/NRD.2016.238
- NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma.Nat Med. 2015; https://doi.org/10.1038/nm.3910
- Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy.Nat Med. 2010; 16: 565-570https://doi.org/10.1038/NM.2128
- Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function.Nat Biomed Eng. 2019; 3: 974-984https://doi.org/10.1038/S41551-019-0409-0
- Antibody-modified T cells: CARs take the front seat for hematologic malignancies.Blood. 2014; 123: 2625-2635https://doi.org/10.1182/BLOOD-2013-11-492231
- Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression.Nucleic Acids Res. 2017; 45: 7897-7908https://doi.org/10.1093/NAR/GKX490
- In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells.Nat Commun. 2020; 11https://doi.org/10.1038/S41467-020-18875-X
- CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis.N Engl J Med. 2021; 385: 493-502https://doi.org/10.1056/NEJMOA2107454
- In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels.Nat Biotechnol. 2021; 39: 949-957https://doi.org/10.1038/s41587-021-00933-4
- Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo.Blood. 2021; 138: 1540-1553https://doi.org/10.1182/BLOOD.2020010020
Rothgangl T, Dennis MK, C Lin PJ, Oka R, Witzigmann D, Villiger L, et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels n.d. https://doi.org/10.1038/s41587-021-00933-4.
- Genome editing in primary cells and in vivo using viral-derived nanoblades loaded with Cas9-sgRNA ribonucleoproteins.Nat Commun. 2019; 10https://doi.org/10.1038/s41467-018-07845-z
- Baboon envelope pseudotyped “nanoblades” carrying Cas9/gRNA complexes allow efficient genome editing in human T, B, and CD34+ Cells and knock-in of AAV6-encoded donor DNA in CD34+ cells.Front Genome Ed. 2021; 3https://doi.org/10.3389/fgeed.2021.604371