Advertisement

Human platelet lysate enhances proliferation but not chondrogenic differentiation of pediatric mesenchymal progenitors

Published:January 02, 2023DOI:https://doi.org/10.1016/j.jcyt.2022.11.007

      Abstract

      Background aims

      Cell therapies have the potential to improve reconstructive procedures for congenital craniofacial cartilage anomalies such as microtia. Adipose-derived stem cells (ADSCs) and auricular cartilage stem/progenitor cells (CSPCs) are promising candidates for cartilage reconstruction, but their successful use in the clinic will require the development of xeno-free expansion and differentiation protocols that can maximize their capacity for chondrogenesis.

      Methods

      We assessed the behavior of human ADSCs and CSPCs grown either in qualified fetal bovine serum (FBS) or human platelet lysate (hPL), a xeno-free alternative, in conventional monolayer and 3-dimensional spheroid cultures.

      Results

      We show that CSPCs and ADSCs display greater proliferation rate in hPL than FBS and express typical mesenchymal stromal cell surface antigens in both media. When expanded in hPL, both cell types, particularly CSPCs, maintain a spindle-like morphology and lower surface area over more passages than in FBS. Both media supplements support chondrogenic differentiation of CSPCs and ADSCs grown either as monolayers or spheroids. However, chondrogenesis appears less ordered in hPL than FBS, with reduced co-localization of aggrecan and collagen type II in spheroids.

      Conclusions

      hPL may be beneficial for the expansion of cells with chondrogenic potential and maintaining stemness, but not for their chondrogenic differentiation for tissue engineering or disease modeling.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Luquetti D.V.
        • Heike C.L.
        • Hing A.V.
        • Cunningham M.L.
        • Cox T.C.
        Microtia: epidemiology and genetics.
        Am J Med Genet A. 2012; 158A: 124-139
        • Jessop Z.M.
        • Javed M.
        • Otto I.A.
        • Combellack E.J.
        • Morgan S.
        • Breugem C.C.
        • Archer C.W.
        • Khan I.M.
        • Lineaweaver W.C.
        • Kon M.
        • Malda J.
        • Whitaker I.S.
        Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering.
        Stem Cell Res Ther. 2016; 7: 19
        • Schroeder M.J.
        • Lloyd M.S.
        Tissue engineering strategies for auricular reconstruction.
        J Craniofac Surg. 2017; 28: 2007-2011
        • Guasti L.
        • Vagaska B.
        • Bulstrode N.W.
        • Seifalian A.M.
        • Ferretti P.
        Chondrogenic differentiation of adipose tissue-derived stem cells within nanocaged POSS-PCU scaffolds: a new tool for nanomedicine.
        Nanomedicine. 2014; 10: 279-289
        • Otto I.A.
        • Levato R.
        • Webb W.R.
        • Khan I.M.
        • Breugem C.C.
        • Malda J.
        Progenitor cells in auricular cartilage demonstrate cartilage-forming capacity in 3D hydrogel culture.
        Eur Cell Mater. 2018; 35: 132-150
        • Zucchelli E.
        • Birchall M.
        • Bulstrode N.W.
        • Ferretti P.
        Modeling normal and pathological ear cartilage in vitro using somatic stem cells in three-dimensional culture.
        Frontiers in Cell and Developmental Biology. 2020; 8
        • Derks M.
        • Sturm T.
        • Haverich A.
        • Hilfiker A.
        Isolation and chondrogenic differentiation of porcine perichondrial progenitor cells for the purpose of cartilage tissue engineering.
        Cells Tissues Organs. 2013; 198: 179-189
        • Kobayashi S.
        • Takebe T.
        • Zheng Y.W.
        • Mizuno M.
        • Yabuki Y.
        • Maegawa J.
        • Taniguchi H.
        Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium.
        PLoS One. 2011; 6: e26393
        • Dominici M.
        • LE Blanc K.
        • Mueller I.
        • Slaper-Cortenbach I.
        • Marini F.
        • Krause D.
        • Deans R.
        • Keating A.
        • Prockop D.
        • Horwitz E.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
        • Mccarthy H.E.
        • Bara J.J.
        • Brakspear K.
        • Singhrao S.K.
        • Archer C.W.
        The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse.
        Vet J. 2012; 192: 345-351
        • Neumann A.J.
        • Gardner O.F.
        • Williams R.
        • Alini M.
        • Archer C.W.
        • Stoddart M.J.
        Human articular cartilage progenitor cells are responsive to mechanical stimulation and adenoviral-mediated overexpression of bone-morphogenetic protein 2.
        PLoS One. 2015; 10e0136229
        • Vinod E.
        • Parameswaran R.
        • Amirtham S.M.
        • Rebekah G.
        • Kachroo U.
        Comparative analysis of human bone marrow mesenchymal stem cells, articular cartilage derived chondroprogenitors and chondrocytes to determine cell superiority for cartilage regeneration.
        Acta Histochem. 2021; 123151713
        • Hennig T.
        • Lorenz H.
        • Thiel A.
        • Goetzke K.
        • Dickhut A.
        • Geiger F.
        • Richter W.
        Reduced chondrogenic potential of adipose tissue derived stromal cells correlates with an altered TGFbeta receptor and BMP profile and is overcome by BMP-6.
        J Cell Physiol. 2007; 211: 682-691
        • Zuk P.A.
        • Zhu M.
        • Ashjian P.
        • De Ugarte D.A.
        • Huang J.I.
        • Mizuno H.
        • Alfonso Z.C.
        • Fraser J.K.
        • Benhaim P.
        • Hedrick M.H.
        Human adipose tissue is a source of multipotent stem cells.
        Mol Biol Cell. 2002; 13: 4279-4295
        • Fraser J.K.
        • Wulur I.
        • Alfonso Z.
        • Hedrick M.H.
        Fat tissue: an underappreciated source of stem cells for biotechnology.
        Trends Biotechnol. 2006; 24: 150-154
        • Van Der Valk
        • Bieback J.
        • Buta K.
        • Cochrane C.
        • Dirks B.
        • G W.
        • Fu J.
        • Hickman J.J.
        • Hohensee C.
        • Kolar R.
        • Liebsch M.
        • Pistollato F.
        • Schulz M.
        • Thieme D.
        • Weber T.
        • Wiest J.
        • Winkler S.
        • Gstraunthaler G
        Fetal bovine serum (FBS): pastࣧpresentࣧfuture.
        ALTEX. 2018; 35: 99-118
        • Bandeiras C.
        • Cabral J.M.
        • Finkelstein S.N.
        • Ferreira F.C.
        Modeling biological and economic uncertainty on cell therapy manufacturing: the choice of culture media supplementation.
        Regen Med. 2018; 13: 917-933
        • Becherucci V.
        • Piccini L.
        • Casamassima S.
        • Bisin S.
        • Gori V.
        • Gentile F.
        • Ceccantini R.
        • DE Rienzo E.
        • Bindi B.
        • Pavan P.
        • Cunial V.
        • Allegro E.
        • Ermini S.
        • Brugnolo F.
        • Astori G.
        • Bambi F.
        Human platelet lysate in mesenchymal stromal cell expansion according to a GMP grade protocol: a cell factory experience.
        Stem Cell Res Ther. 2018; 9: 124
        • Hemeda H.
        • Giebel B.
        • Wagner W.
        Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells.
        Cytotherapy. 2014; 16: 170-180
        • Burnouf T.
        • Strunk D.
        • Koh M.B.
        • Schallmoser K.
        Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation?.
        Biomaterials. 2016; 76: 371-387
        • Guiotto M.
        • Raffoul W.
        • Hart A.M.
        • Riehle M.O.
        • Di summa P.G.
        Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: a systematic review.
        J Transl Med. 2020; 18: 351
        • Astori G.
        • Amati E.
        • Bambi F.
        • Bernardi M.
        • Chieregato K.
        • Schafer R.
        • Sella S.
        • Rodeghiero F.
        Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future.
        Stem Cell Res Ther. 2016; 7: 93
        • Doucet C.
        • Ernou I.
        • Zhang Y.
        • Llense J.R.
        • Begot L.
        • Holy X.
        • Lataillade J.J.
        Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications.
        J Cell Physiol. 2005; 205: 228-236
        • Hildner F.
        • Eder M.J.
        • Hofer K.
        • Aberl J.
        • Redl H.
        • Van Griensven M.
        • Gabriel C.
        • Peterbauer-Scherb A.
        Human platelet lysate successfully promotes proliferation and subsequent chondrogenic differentiation of adipose-derived stem cells: a comparison with articular chondrocytes.
        J Tissue Eng Regen Med. 2015; 9: 808-818
        • Jonsdottir-Buch S.M.
        • Lieder R.
        • Sigurjonsson O.E.
        Platelet lysates produced from expired platelet concentrates support growth and osteogenic differentiation of mesenchymal stem cells.
        PLoS One. 2013; 8: e68984
        • Carluccio S.
        • Martinelli D.
        • Palama M.E.F.
        • Pereira R.C.
        • Benelli R.
        • Guijarro A.
        • Cancedda R.
        • Gentili C.
        Progenitor cells activated by platelet lysate in human articular cartilage as a tool for future cartilage engineering and reparative strategies.
        Cells. 2020; 9
        • Kakudo N.
        • Morimoto N.
        • MA Y.
        • Kusumoto K.
        Differences between the proliferative effects of human platelet lysate and fetal bovine serum on human adipose-derived stem cells.
        Cells. 2019; 8
        • Lensch M.
        • Muise A.
        • White L.
        • Badowski M.
        • Harris D.
        Comparison of synthetic media designed for expansion of adipose-derived mesenchymal stromal cells.
        Biomedicines. 2018; 6
        • Shih D.T.
        • Chen J.C.
        • Chen W.Y.
        • Kuo Y.P.
        • Su C.Y.
        • Burnouf T.
        Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate.
        Transfusion. 2011; 51: 770-778
        • Mantripragada V.P.
        • Muschler G.F.
        Improved biological performance of human cartilage-derived progenitors in platelet lysate xenofree media in comparison to fetal bovine serum media.
        Curr Res Transl Med. 2022; 70103353
        • Rikkers M.
        • Levato R.
        • Malda J.
        • Vonk L.A.
        Importance of timing of platelet lysate-supplementation in expanding or redifferentiating human chondrocytes for chondrogenesis.
        Front Bioeng Biotechnol. 2020; 8: 804
        • Sykes J.G.
        • Kuiper J.H.
        • Richardson J.B.
        • Roberts S.
        • Wright K.T.
        • Kuiper N.J.
        Impact of human platelet lysate on the expansion and chondrogenic capacity of cultured human chondrocytes for cartilage cell therapy.
        Eur Cell Mater. 2018; 35: 255-267
        • Khan I.M.
        • Bishop J.C.
        • Gilbert S.
        • Archer C.W.
        Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential.
        Osteoarthr Cartil. 2009; 17: 518-528
        • Schindelin J.
        • Arganda-Carreras I.
        • Frise E.
        • Kaynig V.
        • Longair M.
        • Pietzsch T.
        • Preibisch S.
        • Rueden C.
        • Saalfeld S.
        • Schmid B.
        • Tinevez J.Y.
        • White D.J.
        • Hartenstein V.
        • Eliceiri K.
        • Tomancak P.
        • Cardona A.
        Fiji: an open-source platform for biological-image analysis.
        Nat Methods. 2012; 9: 676-682
        • Farndale R.W.
        • Buttle D.J.
        • Barrett A.J.
        Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue.
        Biochim Biophys Acta. 1986; 883: 173-177
        • Labarca C.
        • Paigen K.
        A simple, rapid, and sensitive DNA assay procedure.
        Anal Biochem. 1980; 102: 344-352
        • Adkisson H.D.
        • Milliman C.
        • Zhang X.
        • Mauch K.
        • Maziarz R.T.
        • Streeter P.R.
        Immune evasion by neocartilage-derived chondrocytes: Implications for biologic repair of joint articular cartilage.
        Stem Cell Res. 2010; 4: 57-68
        • Tanavde V.
        • Vaz C.
        • Rao M.S.
        • Vemuri M.C.
        • Pochampally R.R.
        Research using mesenchymal stem/stromal cells: quality metric towards developing a reference material.
        Cytotherapy. 2015; 17: 1169-1177
        • Cowper M.
        • Frazier T.
        • WU X.
        • Curley L.
        • MA M.H.
        • Mohuiddin O.A.
        • Dietrich M.
        • Mccarthy M.
        • Bukowska J.
        • Gimble J.M.
        Human platelet lysate as a functional substitute for fetal bovine serum in the culture of human adipose derived stromal/stem cells.
        Cells. 2019; 8
        • Banfi A.
        • Muraglia A.
        • Dozin B.
        • Mastrogiacomo M.
        • Cancedda R.
        • Quarto R.
        Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy.
        Exp Hematol. 2000; 28: 707-715
        • Liau L.L.
        • Hassan M.
        • Tang Y.L.
        • Ng M.H.
        • Law J.X.
        Feasibility of human platelet lysate as an alternative to foetal bovine serum for in vitro expansion of chondrocytes.
        Int J Mol Sci. 2021; 22
        • Benya P.D.
        • Shaffer J.D.
        Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels.
        Cell. 1982; 30: 215-224
        • Holtzer H.
        • Abbott J.
        • Lash J.
        • Holtzer S.
        The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells.
        Proc Natl Acad Sci U S A. 1960; 46: 1533-1542
        • Der Mark Von
        • Gauss K.
        • Von Der Mark V.
        • H
        • Muller P
        Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture.
        Nature. 1977; 267: 531-532
        • Muraglia A.
        • Cancedda R.
        • Quarto R.
        Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.
        J Cell Sci. 2000; 113 (Pt): 1161-1166
        • Pelttari K.
        • Lorenz H.
        • Boeuf S.
        • Templin M.F.
        • Bischel O.
        • Goetzke K.
        • Hsu H.Y.
        • Steck E.
        • Richter W.
        Secretion of matrix metalloproteinase 3 by expanded articular chondrocytes as a predictor of ectopic cartilage formation capacity in vivo.
        Arthritis Rheum. 2008; 58: 467-474
        • Kocaoemer A.
        • Kern S.
        • Kluter H.
        • Bieback K.
        Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue.
        Stem Cells. 2007; 25: 1270-1278
        • Nguyen V.T.
        • Cancedda R.
        • Descalzi F.
        Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.
        J Tissue Eng Regen Med. 2018; 12: e1691-e1703
        • Capelli C.
        • Domenghini M.
        • Borleri G.
        • Bellavita P.
        • Poma R.
        • Carobbio A.
        • Mico C.
        • Rambaldi A.
        • Golay J.
        • Introna M.
        Human platelet lysate allows expansion and clinical grade production of mesenchymal stromal cells from small samples of bone marrow aspirates or marrow filter washouts.
        Bone Marrow Transplant. 2007; 40: 785-791
        • Haasters F.
        • Prall W.C.
        • Anz D.
        • Bourquin C.
        • Pautke C.
        • Endres S.
        • Mutschler W.
        • Docheva D.
        • Schieker M.
        Morphological and immunocytochemical characteristics indicate the yield of early progenitors and represent a quality control for human mesenchymal stem cell culturing.
        J Anat. 2009; 214: 759-767
        • Yang Y.K.
        • Ogando C.R.
        • Wang See C.
        • Chang T.Y.
        • Barabino G.A.
        Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro.
        Stem Cell Res Ther. 2018; 9: 131
        • Chapman H.S.
        • Gale A.L.
        • Dodson M.E.
        • Linardi R.L.
        • Ortved K.F.
        Autologous platelet lysate does not enhance chondrogenic differentiation of equine bone marrow-derived mesenchymal stromal cells despite increased TGF-beta1 concentration.
        Stem Cells Dev. 2020; 29: 144-155
        • Nakamura K.
        • Tsuji K.
        • Mizuno M.
        • Koga H.
        • Muneta T.
        • Sekiya I.
        Initial cell plating density affects properties of human primary synovial mesenchymal stem cells.
        J Orthop Res. 2019; 37: 1358-1367
        • Pereira R.C.
        • Scaranari M.
        • Benelli R.
        • Strada P.
        • Reis R.L.
        • Cancedda R.
        • Gentili C.
        Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution.
        Tissue Eng Part A. 2013; 19: 1476-1488
        • Bosetti M.
        • Boccafoschi F.
        • Leigheb M.
        • Bianchi A.E.
        • Cannas M.
        Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering.
        J Tissue Eng Regen Med. 2012; 6: 205-213
        • Frisch J.
        • Venkatesan J.K.
        • Rey-Rico A.
        • Schmitt G.
        • Madry H.
        • Cucchiarini M.
        Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells.
        Stem Cell Res Ther. 2014; 5: 103
        • Johnstone B.
        • Hering T.M.
        • Caplan A.I.
        • Goldberg V.M.
        • Yoo J.U.
        In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.
        Exp Cell Res. 1998; 238: 265-272
        • Morgan B.J.
        • Bauza-Mayol G.
        • Gardner O.F.W.
        • Zhang Y.
        • Levato R.
        • Archer C.W.
        • VAN Weeren R.
        • Malda J.
        • Conlan R.S.
        • Francis L.W.
        • Khan I.M.
        Bone morphogenetic protein-9 is a potent chondrogenic and morphogenic factor for articular cartilage chondroprogenitors.
        Stem Cells Dev. 2020; 29: 882-894