Advertisement

Impact of storage conditions and duration on function of native and cargo-loaded mesenchymal stromal cell extracellular vesicles

Published:December 10, 2022DOI:https://doi.org/10.1016/j.jcyt.2022.11.006

      Abstract

      Background aims

      As evidenced by ongoing clinical trials and increased activity in the commercial sector, extracellular vesicle (EV)-based therapies have begun the transition from bench to bedside. As this progression continues, one critical aspect of EV clinical translation is understanding the effects of storage and transport conditions. Several studies have assessed the impact of storage on EV characteristics such as morphology, uptake and component content, but effects of storage duration and temperature on EV functional bioactivity and, especially, loaded cargo are rarely reported.

      Methods

      The authors assessed EV outcomes following storage at different temperatures (room temperature, 4°C, –20°C, –80°C) for various durations as well as after lyophilization.

      Results

      Mesenchymal stromal cell (MSC) EVs were observed to retain key aspects of their bioactivity (pro-vascularization, anti-inflammation) for up to 4–6 weeks at –20°C and –80°C and after lyophilization. Furthermore, via in vitro assays and an in vivo wound healing model, these same storage conditions were also demonstrated to enable preservation of the functionality of loaded microRNA and long non-coding RNA cargo in MSC EVs.

      Conclusions

      These findings extend the current understanding of how EV therapeutic potential is impacted by storage conditions and may inform best practices for handling and storing MSC EVs for both basic research and translational purposes.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Murphy D.E.
        • de Jong O.G.
        • Brouwer M.
        • Wood M.J.
        • Lavieu G.
        • Schiffelers R.M.
        • et al.
        Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking.
        Exp Mol Med. 2019; 51: 1-12
        • Murphy D.E.
        • de Jong O.G.
        • Evers M.J.W.
        • Nurazizah M.
        • Schiffelers R.M.
        • Vader P.
        Natural or synthetic RNA delivery: a stoichiometric comparison of extracellular vesicles and synthetic nanoparticles.
        Nano Lett. 2021; 21: 1888-1895
        • Lenzini S.
        • Bargi R.
        • Chung G.
        • Shin J.-W.
        Matrix mechanics and water permeation regulate extracellular vesicle transport.
        Nat Nanotechnol. 2020; 15: 217-223
        • Osorio-Querejeta I.
        • Carregal-Romero S.
        • Ayerdi-Izquierdo A.
        • Mäger I.
        • L A N.
        • Wood M.
        • et al.
        MiR-219a-5p enriched extracellular vesicles induce OPC differentiation and EAE improvement more efficiently than liposomes and polymeric nanoparticles.
        Pharmaceutics. 2020; 12: 186
        • Witwer K.W.
        • Wolfram J.
        Extracellular vesicles versus synthetic nanoparticles for drug delivery.
        Nat Rev Mater. 2021; 6: 103-106
        • Kordelas L.
        • Rebmann V.
        • Ludwig A-K.
        • Radtke S.
        • Ruesing J.
        • Doeppner T.R.
        • Epple M.
        • Horn P.A.
        • Beelen D.W.
        • Giebel B.
        MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease.
        Leukemia. 2014; 28: 970-973
        • Nassar W.
        • El-Ansary M.
        • Sabry D.
        • Mostafa M.A.
        • Fayad T.
        • Kotb E.
        • et al.
        Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases.
        Biomater Res. 2016; 20: 21
        • Ren S.
        • Chen J.
        • Duscher D.
        • Liu Y.
        • Guo G.
        • Kang Y.
        • et al.
        Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways.
        Stem Cell Res Ther. 2019; 10: 47
        • Elsharkasy O.M.
        • Nordin J.Z.
        • Hagey D.W.
        • de Jong O.G.
        • Schiffelers R.M.
        • El Andaloussi S.
        • et al.
        Extracellular vesicles as drug delivery systems: why and how?.
        Adv Drug Deliv Rev. 2020; 159: 332-343
        • Schulz E.
        • Karagianni A.
        • Koch M.
        • Fuhrmann G.
        Hot EVs—how temperature affects extracellular vesicles.
        Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2020; 146: 55-63
        • Charoenviriyakul C.
        • Takahashi Y.
        • Nishikawa M.
        • Takakura Y.
        Preservation of exosomes at room temperature using lyophilization.
        Int J Pharm. 2018; 553: 1-7
        • Noguchi K.
        • Hirano M.
        • Hashimoto T.
        • Yuba E.
        • Takatani-Nakase T.
        • Nakase I.
        Effects of Lyophilization of Arginine-rich Cell-penetrating Peptide-modified Extracellular Vesicles on Intracellular Delivery.
        Anticancer Res. 2019; 39: 6701-6709
        • Cheng Y.
        • Zeng Q.
        • Han Q.
        • Xia W.
        Effect of pH, temperature and freezing-thawing on quantity changes and cellular uptake of exosomes.
        Protein Cell. 2019; 10: 295-299
        • Deville S.
        • Berckmans P.
        • Hoof R.V.
        • Lambrichts I.
        • Salvati A.
        • Nelissen I.
        Comparison of extracellular vesicle isolation and storage methods using high-sensitivity flow cytometry.
        PLoS One. 2021; 16e0245835
        • Lőrincz Á.M.
        • Timár C.I.
        • Marosvári K.A.
        • Veres D.S.
        • Otrokocsi L.
        • Kittel Á.
        • et al.
        Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes.
        J Extracell Vesicles. 2014; 3: 25465
        • Maroto R.
        • Zhao Y.
        • Jamaluddin M.
        • Popov V.L.
        • Wang H.
        • Kalubowilage M.
        • et al.
        Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses.
        J Extracell Vesicles. 2017; 61359478
        • Jin Y.
        • Chen K.
        • Wang Z.
        • Wang Y.
        • Liu J.
        • Lin L.
        • Shao Y.
        • Gao L.
        • Yin H.
        • Cui C.
        • Tan Z.
        • Liu L.
        • Zhao C.
        • Zhang G.
        • Jia R.
        • Du L.
        • Chen Y.
        • Liu R.
        • Xu J.
        • Hu X.
        • Wang Y.
        DNA in serum extracellular vesicles is stable under different storage conditions.
        BMC Cancer. 2016; 16: 753
        • Ge Q.
        • Zhou Y.
        • Lu J.
        • Bai Y.
        • Xie X.
        • Lu Z.
        miRNA in Plasma Exosome is Stable under Different Storage Conditions.
        Molecules. 2014; 19: 1568-1575
        • Tegegn T.Z.
        • De Paoli S.H.
        • Orecna M.
        • Elhelu O.K.
        • Woodle S.A.
        • Tarandovskiy I.D.
        • et al.
        Characterization of procoagulant extracellular vesicles and platelet membrane disintegration in DMSO-cryopreserved platelets.
        J Extracell Vesicles. 2016; 5: 30422
        • Zhou H.
        • Yuen P.S.T.
        • Pisitkun T.
        • Gonzales P.A.
        • Yasuda H.
        • Dear J.W.
        • Gross P.
        • Knepper M.A.
        • Star R.A.
        Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery.
        Kidney Int. 2006; 69: 1471-1476
        • Le Saux S.
        • Aarass H.
        • Lai-Kee-Him J.
        • Bron P.
        • Armengaud J.
        • Miotello G.
        • Bertrand-Michel J.
        • Dubois E.
        • George S.
        • Faklaris O.
        • Devoisselle J-M.
        • Legrand P.
        • Chopineau J.
        • Morille M.
        Post-production modifications of murine mesenchymal stem cell (mMSC) derived extracellular vesicles (EVs) and impact on their cellular interaction.
        Biomaterials. 2020; 231119675
        • Frank J.
        • Richter M.
        • de Rossi C.
        • Lehr C.-M.
        • Fuhrmann K.
        • Fuhrmann G.
        Extracellular vesicles protect glucuronidase model enzymes during freeze-drying.
        Sci Rep. 2018; 8: 12377
        • Wu J.-Y.
        • Li Y.-J.
        • Hu X.-B.
        • Huang S.
        • Xiang D.-X.
        Preservation of small extracellular vesicles for functional analysis and therapeutic applications: a comparative evaluation of storage conditions.
        Drug Deliv. 2021; 28: 162-170
        • van de Wakker S.I.
        • van Oudheusden J.
        • Mol E.A.
        • Roefs M.T.
        • Zheng W.
        • Görgens A.
        • et al.
        Influence of short term storage conditions, concentration methods and excipients on extracellular vesicle recovery and function.
        Eur J Pharm Biopharm. 2022; 170: 59-69
        • Herrmann I.K.
        • Wood M.J.A.
        • Fuhrmann G.
        Extracellular vesicles as a next-generation drug delivery platform.
        Nat Nanotechnol. 2021; 16: 748-759
        • Born L.J.
        • Chang K-H.
        • Shoureshi P.
        • Lay F.
        • Bengali S.
        • Wei Hsu A.T.
        • et al.
        HOTAIR-loaded mesenchymal stem/stromal cell extracellular vesicles enhance angiogenesis and wound healing.
        Adv Healthc Mater. 2022; 11e2002070
        • Lamichhane T.N.
        • Jeyaram A.
        • Patel D.B.
        • Parajuli B.
        • Livingston N.K.
        • Arumugasaamy N.
        • et al.
        Oncogene knockdown via active loading of amall RNAs into extracellular vesicles by sonication.
        Cell Mol Bioeng. 2016; 9: 315-324
        • Pacienza N.
        • Hwa Lee R.
        • Bae E-H.
        • Kim D-K.
        • Liu Q.
        • Prockop D.J.
        • et al.
        In Vitro macrophage assay predicts the In Vivo anti-inflammatory potential of exosomes from human mesenchymal stromal Cells.
        Mol Ther Methods Clin Dev. 2019; 13: 67-76
        • Jeyaram A.
        • Lamichhane T.N.
        • Wang S.
        • Zou L.
        • Dahal E.
        • Kronstadt S.M.
        • et al.
        Enhanced loading of functional miRNA cargo via pH gradient modification of extracellular vesicles.
        Mol Ther. 2020; 28: 975-985
        • Gimona M.
        • Pachler K.
        • Laner-Plamberger S.
        • Schallmoser K.
        • Rohde E.
        Manufacturing of human extracellular vesicle-based therapeutics for clinical use.
        Int J Mol Sci. 2017; 18: 1190
        • Maumus M.
        • Rozier P.
        • Boulestreau J.
        • Jorgensen C.
        • Noël D.
        Mesenchymal stem cell-derived extracellular vesicles: opportunities and challenges for clinical translation.
        Front Bioeng Biotechnol. 2020; 8: 997
        • Li Y.
        • Tenchov R.
        • Smoot J.
        • Liu C.
        • Watkins S.
        • Zhou Q.
        A comprehensive review of the global efforts on COVID-19 vaccine development.
        ACS Cent Sci. 2021; 7: 512-533
        • Meneghel J.
        • Kilbride P.
        • Shingleton W.
        • Morris J.
        Ultra-low shipping temperatures for cell therapies.
        Cytotherapy. 2020; 22 (Supplement): S131
        • Bosch S.
        • de Beaurepaire L.
        • Allard M.
        • Mosser M.
        • Heichette C.
        • Chrétien D.
        • et al.
        Trehalose prevents aggregation of exosomes and cryodamage.
        Sci Rep. 2016; 6: 36162
        • Qin B.
        • Zhang Q.
        • Hu X.
        • Mi T.
        • Liu S.
        • Zhang B.
        • et al.
        How does temperature play a role in the storage of extracellular vesicles?.
        J Cell Physiol. 2020; 235: 7663-7680
        • Evtushenko E.G.
        • Bagrov D.V.
        • Lazarev V.N.
        • Livshits M.A.
        • Khomyakova E.
        Adsorption of extracellular vesicles onto the tube walls during storage in solution.
        PLoS One. 2020; 15e0243738