Advertisement

Identification of marker genes to monitor residual iPSCs in iPSC-derived products

Published:October 29, 2022DOI:https://doi.org/10.1016/j.jcyt.2022.09.010

      Abstract

      Background

      Engineered tissues and cell therapies based on human induced pluripotent stem cells (iPSCs) represent a promising approach for novel medicines. However, iPSC-derived cells and tissues may contain residual undifferentiated iPSCs that could lead to teratoma formation after implantation into patients. As a consequence, highly sensitive and specific methods for detecting residual undifferentiated iPSCs are indispensable for safety evaluations of iPSC-based therapies. The present study provides an approach for identifying potential marker genes for iPSC impurities in iPSC-derived cells using RNA sequencing data from iPSCs and various differentiated cell types.

      Methods

      Identifying iPSC marker genes for each cell type individually provided a larger and more specific set of potential marker genes than considering all cell types in the analysis. Thus, the authors focused on identifying markers for iPSC impurities in iPSC-derived cardiomyocytes (iCMs) and validated the selected genes by reverse transcription quantitative polymerase chain reaction. The sensitivity of the candidate genes was determined by spiking different amounts of iPSCs into iCMs and their performance was compared with the previously suggested marker lin-28 homolog A (LIN28A).

      Results

      Embryonic stem cell-related gene (ESRG), long intergenic non-protein coding RNA 678 (LINC00678), CaM kinase-like vesicle-associated (CAMKV), indoleamine 2,3-dioxygenase 1 (IDO1), chondromodulin (CNMD), LINE1-type transposase domain containing 1 (L1DT1), LIN28A, lymphocyte-specific protein tyrosine kinase (LCK), vertebrae development-associated (VRTN) and zinc finger and SCAN domain containing 10 (ZSCAN10) detected contaminant iPSCs among iCMs with a limit of detection that ranged from 0.001% to 0.1% depending on the gene and iCM batch used.

      Conclusions

      Using the example of iCMs, the authors provide a strategy for identifying a set of highly specific and sensitive markers that can be used for quality assessment of iPSC-derived products.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Takahashi K.
        • Yamanaka S.
        Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
        Cell. 2006; 126: 663-676
        • Li J.
        • Song W.
        • Pan G.
        • Zhou J.
        Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells.
        J Hematol Oncol. 2014; 7: 50
        • Shi Y.
        • Inoue H.
        • Wu J.C.
        • Yamanaka S.
        Induced pluripotent stem cell technology: a decade of progress.
        Nat Rev Drug Discov. 2017; 16: 115-130
        • Fischbach G.D.
        • Fischbach R.L.
        Stem cells: science, policy, and ethics.
        J Clin Invest. 2004; 114: 1364-1370
        • Takahashi K.
        • Tanabe K.
        • Ohnuki M.
        • Narita M.
        • Ichisaka T.
        • Tomoda K.
        • Yamanaka S.
        Induction of pluripotent stem cells from adult human fibroblasts by defined factors.
        Cell. 2007; 131: 861-872
        • Staerk J.
        • Dawlaty M.M.
        • Gao Q.
        • Maetzel D.
        • Hanna J.
        • Sommer C.A.
        • Mostoslavsky G.
        • Jaenisch R.
        Reprogramming of human peripheral blood cells to induced pluripotent stem cells.
        Cell Stem Cell. 2010; 7: 20-24
        • Aasen T.
        • Raya A.
        • Barrero M.J.
        • Garreta E.
        • Consiglio A.
        • Gonzalez F.
        • Vassena R.
        • Bilic J.
        • Pekarik V.
        • Tiscornia G.
        • Edel M.
        • Boue S.
        • Izpisua Belmonte J.C.
        Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes.
        Nat Biotechnol. 2008; 26: 1276-1284
        • Zhou T.
        • Benda C.
        • Duzinger S.
        • Huang Y.
        • Li X.
        • Li Y.
        • Guo X.
        • Cao G.
        • Chen S.
        • Hao L.
        • Chan Y.C.
        • Ng K.M.
        • Ho J.C.
        • Wieser M.
        • Wu J.
        • Redl H.
        • Tse H.F.
        • Grillari J.
        • Grillari-Voglauer R.
        • Pei D.
        • Esteban M.A.
        Generation of induced pluripotent stem cells from urine.
        J Am Soc Nephrol. 2011; 22: 1221-1228
        • Doss M.X.
        • Sachinidis A.
        Current Challenges of iPSC-Based Disease Modeling and Therapeutic Implications.
        Cells. 2019; 8
        • Al Abbar A.
        • Ngai S.C.
        • Nograles N.
        • Alhaji S.Y.
        • Abdullah S.
        Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy.
        Biores Open Access. 2020; 9: 121-136
        • Deinsberger J.
        • Reisinger D.
        • Weber B.
        Global trends in clinical trials involving pluripotent stem cells: a systematic multi-database analysis.
        NPJ Regen Med. 2020; 5: 15
        • Tsujimoto H.
        • Osafune K.
        Current status and future directions of clinical applications using iPS cells—focus on Japan.
        FEBS J. 2021;
        • Kishino Y.
        • Fujita J.
        • Tohyama S.
        • Okada M.
        • Tanosaki S.
        • Someya S.
        • et al.
        Toward the realization of cardiac regenerative medicine using pluripotent stem cells.
        Inflamm Regen. 2020; 40: 1
        • Ishida M.
        • Miyagawa S.
        • Saito A.
        • Fukushima S.
        • Harada A.
        • Ito E.
        • et al.
        Transplantation of Human-induced Pluripotent Stem Cell-derived Cardiomyocytes Is Superior to Somatic Stem Cell Therapy for Restoring Cardiac Function and Oxygen Consumption in a Porcine Model of Myocardial Infarction.
        Transplantation. 2019; 103: 291-298
        • Matsuo T.
        • Masumoto H.
        • Tajima S.
        • Ikuno T.
        • Katayama S.
        • Minakata K.
        • Ikeda T.
        • Yamamizu K.
        • Tabata Y.
        • Sakata R.
        • Yamashita J.K.
        Efficient long-term survival of cell grafts after myocardial infarction with thick viable cardiac tissue entirely from pluripotent stem cells.
        Sci Rep-Uk. 2015; 5: 16842
        • Kawaguchi S.
        • Soma Y.
        • Nakajima K.
        • Kanazawa H.
        • Tohyama S.
        • Tabei R.
        • Hirano A.
        • Handa N.
        • Yamada Y.
        • Okuda S.
        • Hishikawa S.
        • Teratani T.
        • Kunita S.
        • Kishino Y.
        • Okada M.
        • Tanosaki S.
        • Someya S.
        • Morita Y.
        • Tani H.
        • Kawai Y.
        • Yamazaki M.
        • Ito A.
        • Shibata R.
        • Murohara T.
        • Tabata Y.
        • Kobayashi E.
        • Shimizu H.
        • Fukuda K.
        • Fujita J.
        Intramyocardial Transplantation of Human iPS Cell–Derived Cardiac Spheroids Improves Cardiac Function in Heart Failure Animals.
        JACC: Basic to Translational Science. 2021; 6: 239-254
      1. Japan Registry of Clinical Trials, Clinical trial of human (allogeneic) iPS cell-derived cardiomyocytes sheet for ischemic cardiomyopathy. (2022) https://jrct.niph.go.jp/en-latest-detail/jRCT2053190081. (Accessed 17.2.2022).

        • Sato Y.
        • Bando H.
        • Di Piazza M.
        • Gowing G.
        • Herberts C.
        • Jackman S.
        • Leoni G.
        • Libertini S.
        • MacLachlan T.
        • McBlane J.W.
        • Pereira Mouriès L.
        • Sharpe M.
        • Shingleton W.
        • Surmacz-Cordle B.
        • Yamamoto K.
        • van der Laan J.W.
        Tumorigenicity assessment of cell therapy products: The need for global consensus and points to consider.
        Cytotherapy. 2019; 21: 1095-1111
        • Nazor Kristopher L.
        • Altun G.
        • Lynch C.
        • Tran H.
        • Harness Julie V.
        • Slavin I.
        • Garitaonandia I.
        • Müller F.-J.
        • Wang Y.-C.
        • Boscolo Francesca S.
        • Fakunle E.
        • Dumevska B.
        • Lee S.
        • Park Hyun S.
        • Olee T.
        • D'Lima Darryl D.
        • Semechkin R.
        • Parast Mana M.
        • Galat V.
        • Laslett Andrew L.
        • Schmidt U.
        • Keirstead Hans S.
        • Loring Jeanne F.
        • Laurent Louise C.
        Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and Their Differentiated Derivatives.
        Cell Stem Cell. 2012; 10: 620-634
        • Lister R.
        • Pelizzola M.
        • Kida Y.S.
        • Hawkins R.D.
        • Nery J.R.
        • Hon G.
        • Antosiewicz-Bourget J.
        • O'Malley R.
        • Castanon R.
        • Klugman S.
        • Downes M.
        • Yu R.
        • Stewart R.
        • Ren B.
        • Thomson J.A.
        • Evans R.M.
        • Ecker J.R.
        Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.
        Nature. 2011; 471: 68-73
        • Kim K.
        • Zhao R.
        • Doi A.
        • Ng K.
        • Unternaehrer J.
        • Cahan P.
        • et al.
        Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells.
        Nat Biotechnol. 2011; 29: 1117-1119
        • Kilpinen H.
        • Goncalves A.
        • Leha A.
        • Afzal V.
        • Alasoo K.
        • Ashford S.
        • Bala S.
        • Bensaddek D.
        • Casale F.P.
        • Culley O.J.
        • Danecek P.
        • Faulconbridge A.
        • Harrison P.W.
        • Kathuria A.
        • McCarthy D.
        • McCarthy S.A.
        • Meleckyte R.
        • Memari Y.
        • Moens N.
        • Soares F.
        • Mann A.
        • Streeter I.
        • Agu C.A.
        • Alderton A.
        • Nelson R.
        • Harper S.
        • Patel M.
        • White A.
        • Patel S.R.
        • Clarke L.
        • Halai R.
        • Kirton C.M.
        • Kolb-Kokocinski A.
        • Beales P.
        • Birney E.
        • Danovi D.
        • Lamond A.I.
        • Ouwehand W.H.
        • Vallier L.
        • Watt F.M.
        • Durbin R.
        • Stegle O.
        • Gaffney D.J.
        Common genetic variation drives molecular heterogeneity in human iPSCs.
        Nature. 2017; 546: 370-375
        • Zhao T.
        • Zhang Z.-n.
        • Westenskow P.D.
        • Todorova D.
        • Hu Z.
        • Lin T.
        • Rong Z.
        • Kim J.
        • He J.
        • Wang M.
        • Clegg Dennis O.
        • Yang Y.-g.
        • Zhang K.
        • Friedlander M.
        • Xu Y.
        Humanized Mice Reveal Differential Immunogenicity of Cells Derived from Autologous Induced Pluripotent Stem Cells.
        Cell Stem Cell. 2015; 17: 353-359
        • Zhao T.
        • Zhang Z.N.
        • Rong Z.
        • Xu Y.
        Immunogenicity of induced pluripotent stem cells.
        Nature. 2011; 474: 212-215
        • Kruse V.
        • Hamann C.
        • Monecke S.
        • Cyganek L.
        • Elsner L.
        • Hübscher D.
        • Walter L.
        • Streckfuss-Bömeke K.
        • Guan K.
        • Dressel R.
        Human Induced Pluripotent Stem Cells Are Targets for Allogeneic and Autologous Natural Killer (NK) Cells and Killing Is Partly Mediated by the Activating NK Receptor DNAM-1.
        Plos One. 2015; 10e0125544
        • Yoshihara M.
        • Hayashizaki Y.
        • Murakawa Y.
        Genomic Instability of iPSCs: Challenges Towards Their Clinical Applications.
        Stem Cell Rev Rep. 2017; 13: 7-16
        • Abyzov A.
        • Mariani J.
        • Palejev D.
        • Zhang Y.
        • Haney M.S.
        • Tomasini L.
        • Ferrandino A.F.
        • Rosenberg Belmaker L.A.
        • Szekely A.
        • Wilson M.
        • Kocabas A.
        • Calixto N.E.
        • Grigorenko E.L.
        • Huttner A.
        • Chawarska K.
        • Weissman S.
        • Urban A.E.
        • Gerstein M.
        • Vaccarino F.M.
        Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.
        Nature. 2012; 492: 438-442
        • Ji J.
        • Ng S.H.
        • Sharma V.
        • Neculai D.
        • Hussein S.
        • Sam M.
        • Trinh Q.
        • Church G.M.
        • McPherson J.D.
        • Nagy A.
        • Batada N.N.
        Elevated coding mutation rate during the reprogramming of human somatic cells into induced pluripotent stem cells.
        Stem Cells. 2012; 30: 435-440
        • Gore A.
        • Li Z.
        • Fung H.L.
        • Young J.E.
        • Agarwal S.
        • Antosiewicz-Bourget J.
        • Canto I.
        • Giorgetti A.
        • Israel M.A.
        • Kiskinis E.
        • Lee J.H.
        • Loh Y.H.
        • Manos P.D.
        • Montserrat N.
        • Panopoulos A.D.
        • Ruiz S.
        • Wilbert M.L.
        • Yu J.
        • Kirkness E.F.
        • Izpisua Belmonte J.C.
        • Rossi D.J.
        • Thomson J.A.
        • Eggan K.
        • Daley G.Q.
        • Goldstein L.S.
        • Zhang K.
        Somatic coding mutations in human induced pluripotent stem cells.
        Nature. 2011; 471: 63-67
        • Kuroda T.
        • Yasuda S.
        • Kusakawa S.
        • Hirata N.
        • Kanda Y.
        • Suzuki K.
        • et al.
        Highly Sensitive In Vitro Methods for Detection of Residual Undifferentiated Cells in Retinal Pigment Epithelial Cells Derived from Human iPS Cells.
        PLoS One. 2012; 7: 183-192
        • Tano K.
        • Yasuda S.
        • Kuroda T.
        • Saito H.
        • Umezawa A.
        • Sato Y.
        A Novel In Vitro Method for Detecting Undifferentiated Human Pluripotent Stem Cells as Impurities in Cell Therapy Products Using a Highly Efficient Culture System.
        PLoS One. 2014; 9
        • Tateno H.
        • Onuma Y.
        • Ito Y.
        • Hiemori K.
        • Aiki Y.
        • Shimizu M.
        • et al.
        A medium hyperglycosylated podocalyxin enables noninvasive and quantitative detection of tumorigenic human pluripotent stem cells.
        Sci Rep. 2014; 4: 4069
        • Sekine K.
        • Tsuzuki S.
        • Yasui R.
        • Kobayashi T.
        • Ikeda K.
        • Hamada Y.
        • et al.
        Robust detection of undifferentiated iPSC among differentiated cells.
        Sci Rep. 2020; 10: 10293
        • Kuroda T.
        • Yasuda S.
        • Matsuyama S.
        • Tano K.
        • Kusakawa S.
        • Sawa Y.
        • Kawamata S.
        • Sato Y.
        Highly sensitive droplet digital PCR method for detection of residual undifferentiated cells in cardiomyocytes derived from human pluripotent stem cells.
        Regen Ther. 2015; 2: 17-23
        • Ito E.
        • Miyagawa S.
        • Takeda M.
        • Kawamura A.
        • Harada A.
        • Iseoka H.
        • Yajima S.
        • Sougawa N.
        • Mochizuki-Oda N.
        • Yasuda S.
        • Sato Y.
        • Sawa Y.
        Tumorigenicity assay essential for facilitating safety studies of hiPSC-derived cardiomyocytes for clinical application.
        Sci Rep-Uk. 2019; 9
        • Artyuhov A.S.
        • Dashinimaev E.B.
        • Mescheryakova N.V.
        • Ashikhmina A.A.
        • Vorotelyak E.A.
        • Vasiliev A.V.
        Detection of small numbers of iPSCs in different heterogeneous cell mixtures with highly sensitive droplet digital PCR.
        Mol Biol Rep. 2019; 46: 6675-6683
        • Masaki H.
        • Ishikawa T.
        • Takahashi S.
        • Okumura M.
        • Sakai N.
        • Haga M.
        • Kominami K.
        • Migita H.
        • McDonald F.
        • Shimada F.
        • Sakurada K.
        Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture.
        Stem Cell Research. 2008; 1: 105-115
        • Vitale A.M.
        • Matigian N.A.
        • Ravishankar S.
        • Bellette B.
        • Wood S.A.
        • Wolvetang E.J.
        • Mackay-Sim A.
        Variability in the generation of induced pluripotent stem cells: importance for disease modeling.
        Stem Cells Transl Med. 2012; 1: 641-650
        • Russell O.M.
        • Fruh I.
        • Rai P.K.
        • Marcellin D.
        • Doll T.
        • Reeve A.
        • Germain M.
        • Bastien J.
        • Rygiel K.A.
        • Cerino R.
        • Sailer A.W.
        • Lako M.
        • Taylor R.W.
        • Mueller M.
        • Lightowlers R.N.
        • Turnbull D.M.
        • Helliwell S.B.
        Preferential amplification of a human mitochondrial DNA deletion in vitro and in vivo.
        Sci Rep-Uk. 2018; 8: 1799
        • Giorgetti E.
        • Panesar M.
        • Zhang Y.
        • Joller S.
        • Ronco M.
        • Obrecht M.
        • et al.
        Modulation of Microglia by Voluntary Exercise or CSF1R Inhibition Prevents Age-Related Loss of Functional Motor Units.
        Cell Rep. 2019; 29: 1539-1554.e7
        • Wang L.
        • Wang S.
        • Li W.
        RSeQC: quality control of RNA-seq experiments.
        Bioinformatics. 2012; 28: 2184-2185
      2. S. Andrews, FastQC: a quality control tool for high throughput sequence data. (2022) https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. (Accessed 10.02.2022).

        • Schuierer S.
        • Roma G.
        The exon quantification pipeline (EQP): a comprehensive approach to the quantification of gene, exon and junction expression from RNA-seq data.
        Nucleic Acids Res. 2016; 44: e132
        • Love M.I.
        • Huber W.
        • Anders S.
        Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
        Genome Biol. 2014; 15: 550
        • Durinck S.
        • Spellman P.T.
        • Birney E.
        • Huber W.
        Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt.
        Nat Protoc. 2009; 4: 1184-1191
        • Howe K.L.
        • Achuthan P.
        • Allen J.
        • Allen J.
        • Alvarez-Jarreta J.
        • Amode M.R.
        • et al.
        Ensembl 2021.
        Nucleic Acids Res. 2020; 49: D884-D891
        • Ihry R.J.
        • Worringer K.A.
        • Salick M.R.
        • Frias E.
        • Ho D.
        • Theriault K.
        • et al.
        p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells.
        Nat Med. 2018; 24: 939-946
        • Sun Y.
        • Paşca S.P.
        • Portmann T.
        • Goold C.
        • Worringer K.A.
        • Guan W.
        • Chan K.C.
        • Gai H.
        • Vogt D.
        • Chen Y.-J.J.
        • Mao R.
        • Chan K.
        • Rubenstein J.L.
        • Madison D.V.
        • Hallmayer J.
        • Froehlich-Santino W.M.
        • Bernstein J.A.
        • Dolmetsch R.E.
        A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients.
        Elife. 2016; 5: e13073
        • Ungricht R.
        • Guibbal L.
        • Lasbennes M.C.
        • Orsini V.
        • Beibel M.
        • Waldt A.
        • Cuttat R.
        • Carbone W.
        • Basler A.
        • Roma G.
        • Nigsch F.
        • Tchorz J.S.
        • Hoepfner D.
        • Hoppe P.S.
        Genome-wide screening in human kidney organoids identifies developmental and disease-related aspects of nephrogenesis.
        Cell Stem Cell. 2022; 29: 160-175.e7
        • McCall M.N.
        • McMurray H.R.
        • Land H.
        • Almudevar A.
        On non-detects in qPCR data.
        Bioinformatics. 2014; 30: 2310-2316
        • Ganger M.T.
        • Dietz G.D.
        • Ewing S.J.
        A common base method for analysis of qPCR data and the application of simple blocking in qPCR experiments.
        BMC Bioinform. 2017; 18: 534
        • Bengtsson M.
        • Ståhlberg A.
        • Rorsman P.
        • Kubista M.
        Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels.
        Genome Res. 2005; 15: 1388-1392
        • White A.K.
        • VanInsberghe M.
        • Petriv O.I.
        • Hamidi M.
        • Sikorski D.
        • Marra M.A.
        • Piret J.
        • Aparicio S.
        • Hansen C.L.
        High-throughput microfluidic single-cell RT-qPCR.
        Proc Natl Acad Sci U S A. 2011; 108: 13999-14004
        • McDavid A.
        • Finak G.
        • Chattopadyay P.K.
        • Dominguez M.
        • Lamoreaux L.
        • Ma S.S.
        • Roederer M.
        • Gottardo R.
        Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments.
        Bioinformatics. 2013; 29: 461-467
        • Peng S.
        • Maihle N.J.
        • Huang Y.
        Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer.
        Oncogene. 2010; 29: 2153-2159
        • Ghaleb A.M.
        • Yang V.W.
        Krüppel-like factor 4 (KLF4): What we currently know.
        Gene. 2017; 611: 27-37
        • de Souza Lima I.M.
        • Schiavinato J.L.d.S.
        • Paulino Leite S.B.
        • Sastre D.
        • Bezerra H.L.d.O.
        • Sangiorgi B.
        • et al.
        High-content screen in human pluripotent cells identifies miRNA-regulated pathways controlling pluripotency and differentiation.
        Stem Cell Res Ther. 2019; 10: 202
        • Yasuda S.
        • Kusakawa S.
        • Kuroda T.
        • Miura T.
        • Tano K.
        • Takada N.
        • Matsuyama S.
        • Matsuyama A.
        • Nasu M.
        • Umezawa A.
        • Hayakawa T.
        • Tsutsumi H.
        • Sato Y.
        Tumorigenicity-associated characteristics of human iPS cell lines.
        PLoS One. 2018; 13e0205022
        • Gropp M.
        • Shilo V.
        • Vainer G.
        • Gov M.
        • Gil Y.
        • Khaner H.
        • Matzrafi L.
        • Idelson M.
        • Kopolovic J.
        • Zak N.B.
        • Reubinoff B.E.
        Standardization of the Teratoma Assay for Analysis of Pluripotency of Human ES Cells and Biosafety of Their Differentiated Progeny.
        Plos One. 2012; 7
        • Russel W.M.S.
        • Burch R.L.
        The Principles of Humane Experimental Technique. Methuen & Co. Limited, London1959
        • Kusakawa S.
        • Yasuda S.
        • Kuroda T.
        • Kawamata S.
        • Sato Y.
        Ultra-sensitive detection of tumorigenic cellular impurities in human cell-processed therapeutic products by digital analysis of soft agar colony formation.
        Sci Rep. 2015; 5: 17892
        • Rotem A.
        • Janzer A.
        • Izar B.
        • Ji Z.
        • Doench J.G.
        • Garraway L.A.
        • et al.
        Alternative to the soft-agar assay that permits high-throughput drug and genetic screens for cellular transformation.
        Proc Natl Acad Sci. 2015; 112: 5708
        • Lemmens M.
        • Fischer B.
        • Zogg M.
        • Rodrigues L.
        • Kerr G.
        • Rio-Espinola A.d.
        • et al.
        Evaluation of two in vitro assays for tumorigenicity assessment of CRISPR/Cas9 genome-edited cells.
        Mol Ther Methods Clin Dev. 2021; : 241-253
        • Vermeesch J.R.
        • Fiegler H.
        • de Leeuw N.
        • Szuhai K.
        • Schoumans J.
        • Ciccone R.
        • et al.
        Guidelines for molecular karyotyping in constitutional genetic diagnosis.
        Eur J Hum Genet. 2007; 15: 1105-1114
        • Bhat S.
        • Herrmann J.
        • Armishaw P.
        • Corbisier P.
        • Emslie K.R.
        Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number.
        Anal Bioanal Chem. 2009; 394: 457-467
        • Hindson B.J.
        • Ness K.D.
        • Masquelier D.A.
        • Belgrader P.
        • Heredia N.J.
        • Makarewicz A.J.
        • et al.
        High-throughput droplet digital PCR system for absolute quantitation of DNA copy number.
        Anal Chem. 2011; 83: 8604-8610
        • Miyagawa S.
        • Kainuma S.
        • Kawamura T.
        • Suzuki K.
        • Yoshito I.
        Case report: Transplantation of human induced pluripotent stem cell-derived cardiomyocyte patches for ischemic cardiomyopathy.
        Front Cardiovasc Med. 2022; 9https://doi.org/10.3389/fcvm.2022.950829