Advertisement

Stem cell-derived exosomes in bone healing: focusing on their role in angiogenesis

Published:October 11, 2022DOI:https://doi.org/10.1016/j.jcyt.2022.08.008

      Abstract

      Fractures in bone, a tissue critical in protecting other organs, affect patients’ quality of life and have a heavy economic burden on societies. Based on regenerative medicine and bone tissue engineering approaches, stem cells have become a promising and attractive strategy for repairing bone fractures via differentiation into bone-forming cells and production of favorable mediators. Recent evidence suggests that stem cell-derived exosomes could mediate the therapeutic effects of their counterpart cells and provide a cell-free therapeutic strategy in bone repair. Since bone is a highly vascularized tissue, coupling angiogenesis and osteogenesis is critical in bone fracture healing; thus, developing therapeutic strategies to promote angiogenesis will facilitate bone regeneration and healing. To this end, stem cell-derived exosomes with angiogenic potency have been developed to improve fracture healing. This review summarizes the effects of stem cell-derived exosomes on the repair of bone tissue, focusing on the angiogenesis process.

      Graphical Abstract

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Tan Q
        • Liu Y
        • Lei T
        • Ye W
        • Hu X
        • Mei H
        • et al.
        Study on the Mechanism of Salvia miltiorrhiza in the Treatment of Traumatic Bone Defects.
        J Chem. 2021; 2021
        • He Y
        • Zhao Y
        • Fan L
        • Wang X
        • Duan M
        • Wang H
        • et al.
        Injectable Affinity and Remote Magnetothermal Effects of Bi-Based Alloy for Long-Term Bone Defect Repair and Analgesia.
        Adv Sci. 2021; 82100719
        • Šalandová M
        • van Hengel IAJ
        • Apachitei I
        • Zadpoor AA
        • van der Eerden BCJ
        • LE Fratila-Apachitei
        Inorganic agents for enhanced angiogenesis of orthopedic biomaterials.
        Adv Healthc Mater. 2021; 102002254
        • Aurora A
        • Wrice N
        • Walters TJ
        • Christy RJ
        • Natesan S.
        A PEGylated platelet free plasma hydrogel based composite scaffold enables stable vascularization and targeted cell delivery for volumetric muscle loss.
        Acta Biomater. 2018; 65: 150-162
        • Wang R
        • Ozsvar J
        • Aghaei-Ghareh-Bolagh B
        • Hiob MA
        • Mithieux SM
        • Weiss AS.
        Freestanding hierarchical vascular structures engineered from ice.
        Biomaterials. 2019; 192: 334-345
        • Liao H-T
        • Chen C-T.
        Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells.
        World J Stem Cells. 2014; 6: 288
        • Pu X
        • Ma S
        • Gao Y
        • Xu T
        • Chang P
        • Dong L.
        Mesenchymal stem cell-derived exosomes: biological function and their therapeutic potential in radiation damage.
        Cells. 2020; 10: 42
        • Pegtel DM
        • Gould SJ.
        Exosomes.
        Annu Rev Biochem. 2019; 88: 487-514
        • Harding C
        • Stahl P.
        Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing.
        Biochem Biophys Res Commun. 1983; 113: 650-658
        • Pan B-T
        • Johnstone RM.
        Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor.
        Cell. 1983; 33: 967-978
        • Colombo M
        • Raposo G
        • Théry C.
        Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.
        Annu Rev Cell Dev Biol. 2014; 30: 255-289
        • Miller I V
        • Grunewald TGP.
        Tumour-derived exosomes: Tiny envelopes for big stories.
        Biol Cell. 2015; 107: 287-305
        • Kalluri R
        • LeBleu VS.
        The biology, function, and biomedical applications of exosomes.
        Science. 2020; 367: eaau6977
        • Théry C
        • Amigorena S
        • Raposo G
        • Clayton A.
        Isolation and characterization of exosomes from cell culture supernatants and biological fluids.
        Curr Protoc Cell Biol. 2006; 30: 3-22
        • Minciacchi VR
        • Freeman MR
        • Di Vizio D.
        Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes.
        Semin. Cell Dev. Biol. 40. 2015: 41-51
        • Zhang Y
        • Liu Y
        • Liu H
        • Tang WH.
        Exosomes: biogenesis, biologic function and clinical potential.
        Cell Biosci. 2019; 9: 1-18
        • Yue B
        • Yang H
        • Wang J
        • Ru W
        • Wu J
        • Huang Y
        • et al.
        Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis.
        Cell Prolif. 2020; 53: e12857
        • Juan T
        • Fürthauer M.
        Biogenesis and function of ESCRT-dependent extracellular vesicles.
        Semin. Cell Dev. Biol. 74. 2018: 66-77
        • Babst M.
        MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between.
        Curr Opin Cell Biol. 2011; 23: 452-457
        • Crenshaw BJ
        • Gu L
        • Sims B
        • Matthews QL.
        Exosome biogenesis and biological function in response to viral infections.
        Open Virol J. 2018; 12: 134
        • Livshits MA
        • Khomyakova E
        • Evtushenko EG
        • Lazarev VN
        • Kulemin NA
        • Semina SE
        • et al.
        Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol.
        Sci Rep. 2015; 5: 1-14
        • Lobb RJ
        • Becker M
        • Wen Wen S
        • Wong CSF
        • Wiegmans AP
        • Leimgruber A
        • et al.
        Optimized exosome isolation protocol for cell culture supernatant and human plasma.
        J Extracell Vesicles. 2015; 4: 27031
        • Cvjetkovic A
        • Lötvall J
        • Lässer C.
        The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles.
        J Extracell Vesicles. 2014; 3: 23111
        • Hade MD
        • Suire CN
        • Suo Z.
        Mesenchymal stem cell-derived exosomes: applications in regenerative medicine.
        Cells. 2021; 10: 1959
        • Nikfarjam S
        • Rezaie J
        • Zolbanin NM
        • Jafari R.
        Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine.
        J Transl Med. 2020; 18: 1-21
        • Sidhom K
        • Obi PO
        • Saleem A.
        A review of exosomal isolation methods: is size exclusion chromatography the best option?.
        Int J Mol Sci. 2020; 21: 6466
        • Poupardin R
        • Wolf M
        • Strunk D.
        Adherence to minimal experimental requirements for defining extracellular vesicles and their functions.
        Adv Drug Deliv Rev. 2021; 176113872
        • Théry C
        • Witwer KW
        • Aikawa E
        • Alcaraz MJ
        • Anderson JD
        • Andriantsitohaina R
        • et al.
        Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.
        J Extracell Vesicles. 2018; 71535750
        • De Witte T-M
        • Fratila-Apachitei LE
        • Zadpoor AA
        • Peppas NA.
        Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices.
        Regen Biomater. 2018; 5: 197-211
        • Amini AR
        • Laurencin CT
        • Nukavarapu SP.
        Bone tissue engineering: recent advances and challenges.
        Crit Rev Biomed Eng. 2012; 40: 363-408
        • Iviglia G
        • Kargozar S
        • Baino F.
        Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration.
        J Funct Biomater. 2019; 10: 3
        • Lim TC
        • Chian KS
        • Leong KF.
        Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration.
        J Biomed Mater Res Part A. 2010; 94: 1303-1311
        • Morejón L
        • Delgado JA
        • Antunes Ribeiro A
        • Varella de Oliveira M
        • Mendizábal E
        • García I
        • et al.
        Development, characterization and in vitro biological properties of scaffolds fabricated from calcium phosphate nanoparticles.
        Int J Mol Sci. 2019; 20: 1790
        • Diaz-Rodriguez P
        • Sánchez M
        • Landin M.
        Drug-loaded biomimetic ceramics for tissue engineering.
        Pharmaceutics. 2018; 10: 272
        • Guo L
        • Liang Z
        • Yang L
        • Du W
        • Yu T
        • Tang H
        • et al.
        The role of natural polymers in bone tissue engineering.
        J Control Release. 2021; 338: 571-582
        • Chocholata P
        • Kulda V
        • Babuska V.
        Fabrication of scaffolds for bone-tissue regeneration.
        Materials (Basel). 2019; 12: 568
        • Koons GL
        • Diba M
        • Mikos AG.
        Materials design for bone-tissue engineering.
        Nat Rev Mater. 2020; 5: 584-603
        • Li J
        • Liu X
        • Crook JM
        • Wallace GG.
        Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold.
        Mater Sci Eng C. 2020; 107110312
        • Ginebra M-P
        • Espanol M
        • Maazouz Y
        • Bergez V
        • Pastorino D.
        Bioceramics and bone healing.
        EFORT Open Rev. 2018; 3: 173-183
        • Arthur A
        • Gronthos S.
        Clinical application of bone marrow mesenchymal stem/stromal cells to repair skeletal tissue.
        Int J Mol Sci. 2020; 21: 9759
        • Hutton DL
        • Grayson WL.
        Stem cell-based approaches to engineering vascularized bone.
        Curr Opin Chem Eng. 2014; 3: 75-82
        • Shang F
        • Yu Y
        • Liu S
        • Ming L
        • Zhang Y
        • Zhou Z
        • et al.
        Advancing application of mesenchymal stem cell-based bone tissue regeneration.
        Bioact Mater. 2021; 6: 666-683
        • Kurenkova AD
        • Medvedeva E V
        • Newton PT
        • Chagin AS.
        Niches for skeletal stem cells of mesenchymal origin.
        Front Cell Dev Biol. 2020; 8: 592
        • Ambrosi TH
        • Longaker MT
        • Chan CKF.
        A revised perspective of skeletal stem cell biology.
        Front Cell Dev Biol. 2019; 7: 189
        • Moradi SL
        • Golchin A
        • Hajishafieeha Z
        • Khani M
        • Ardeshirylajimi A.
        Bone tissue engineering: adult stem cells in combination with electrospun nanofibrous scaffolds.
        J Cell Physiol. 2018; 233: 6509-6522
        • De Francesco F
        • Matta C
        • Riccio M
        • Sbarbati A
        • Mobasheri A.
        Reevolution of tissue regeneration: From recent advances in adipose stem cells to novel therapeutic approaches.
        Stem Cells Int. 2021; 2021
        • Ciuffi S
        • Zonefrati R
        • Brandi ML.
        Adipose stem cells for bone tissue repair.
        Clin Cases Miner Bone Metab. 2017; 14: 217
        • Liu P
        • Zhang Y
        • Ma Y
        • Tan S
        • Ren B
        • Liu S
        • et al.
        Application of dental pulp stem cells in oral maxillofacial tissue engineering.
        Int J Med Sci. 2022; 19: 310
        • Fujii Y
        • Kawase-Koga Y
        • Hojo H
        • Yano F
        • Sato M
        • Chung U
        • et al.
        Bone regeneration by human dental pulp stem cells using a helioxanthin derivative and cell-sheet technology.
        Stem Cell Res Ther. 2018; 9: 1-12
        • Brucoli M
        • Sonzini R
        • Bosetti M
        • Boffano P
        • Benech A.
        Plasma rich in growth factors (PRGF) for the promotion of bone cell proliferation and tissue regeneration.
        Oral Maxillofac Surg. 2018; 22: 309-313
        • Nichols SP
        • Storm WL
        • Koh A
        • Schoenfisch MH.
        Local delivery of nitric oxide: targeted delivery of therapeutics to bone and connective tissues.
        Adv Drug Deliv Rev. 2012; 64: 1177-1188
        • Gerstenfeld LC
        • Cullinane DM
        • Barnes GL
        • Graves DT
        • Einhorn TA.
        Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation.
        J Cell Biochem. 2003; 88: 873-884
        • Singh P
        • Gupta A
        • Qayoom I
        • Singh S
        • Kumar A.
        Orthobiologics with phytobioactive cues: a paradigm in bone regeneration.
        Biomed Pharmacother. 2020; 130110754
        • Hankenson KD
        • Gagne K
        • Shaughnessy M.
        Extracellular signaling molecules to promote fracture healing and bone regeneration.
        Adv Drug Deliv Rev. 2015; 94: 3-12
        • Martino MM
        • Briquez PS
        • Maruyama K
        • Hubbell JA.
        Extracellular matrix-inspired growth factor delivery systems for bone regeneration.
        Adv Drug Deliv Rev. 2015; 94: 41-52
        • Gómez-Gaviro MV
        • Lovell-Badge R
        • Fernández-Avilés F
        • Lara-Pezzi E.
        The vascular stem cell niche.
        J Cardiovasc Transl Res. 2012; 5: 618-630
        • Hausman MR
        • Schaffler MB
        • Majeska RJ.
        Prevention of fracture healing in rats by an inhibitor of angiogenesis.
        Bone. 2001; 29: 560-564
        • Huang Y
        • Pan M
        • Shu H
        • He B
        • Zhang F
        • Sun L.
        Vascular endothelial growth factor enhances tendon-bone healing by activating Yes-associated protein for angiogenesis induction and rotator cuff reconstruction in rats.
        J Cell Biochem. 2020; 121: 2343-2353
        • Stegen S
        • van Gastel N
        • Carmeliet G.
        Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration.
        Bone. 2015; 70: 19-27
        • Deckers MM
        • van Bezooijen RL
        • van der Horst G
        • Hoogendam J
        • van der Bent C
        • Papapoulos SE
        • Löwik CWGM.
        Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A.
        Endocrinology. 2002; 143: 1545-1553
        • Street J
        • Bao M
        • Deguzman L
        • Bunting S
        • Peale Jr, F V
        • Ferrara N
        • van BN
        • Redmond HP
        • Carano RA
        • Filvaroff EH
        • et al.
        Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.
        Proc Natl Acad Sci USA. 2002; 99: 9656-9661
        • Li B
        • Wang H
        • Qiu G
        • Su X
        • Wu Z.
        Synergistic effects of vascular endothelial growth factor on bone morphogenetic proteins induced bone formation in vivo: influencing factors and future research directions.
        Biomed Res Int. 2016; 2016
        • Bao X
        • Zhu L
        • Huang X
        • Tang D
        • He D
        • Shi J
        • et al.
        3D biomimetic artificial bone scaffolds with dual-cytokines spatiotemporal delivery for large weight-bearing bone defect repair.
        Sci Rep. 2017; 7: 1-13
        • Zheng Z
        • Chen Y
        • Wu D
        • Wang J
        • Lv M
        • Wang X
        • et al.
        Development of an accurate and proactive immunomodulatory strategy to improve bone substitute material-mediated osteogenesis and angiogenesis.
        Theranostics. 2018; 8: 5482
        • Zhao Y
        • Xie L.
        Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases.
        Ann N Y Acad Sci. 2020; 1474: 5-14
        • Tang Y
        • Hu M
        • Xu Y
        • Chen F
        • Chen S
        • Chen M
        • et al.
        Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1.
        Theranostics. 2020; 10: 2229
        • Xie H
        • Cui Z
        • Wang L
        • Xia Z
        • Hu Y
        • Xian L
        • et al.
        PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis.
        Nat Med. 2014; 20: 1270-1278
        • Chen K
        • Liao S
        • Li Y
        • Jiang H
        • Liu Y
        • Wang C
        • et al.
        Osteoblast-derived EGFL6 couples angiogenesis to osteogenesis during bone repair.
        Theranostics. 2021; 11: 9738
        • Mi J
        • Xu J
        • Yao H
        • Li X
        • Tong W
        • Li Y
        • et al.
        Calcitonin gene-related peptide enhances distraction osteogenesis by increasing angiogenesis.
        Tissue Eng Part A. 2021; 27: 87-102
        • Guo Q
        • Yang J
        • Chen Y
        • Jin X
        • Li Z
        • Wen X
        • et al.
        Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment.
        Eur J Pharmacol. 2020; 884173394
        • Bai J
        • Li L
        • Kou N
        • Bai Y
        • Zhang Y
        • Lu Y
        • et al.
        Low level laser therapy promotes bone regeneration by coupling angiogenesis and osteogenesis.
        Stem Cell Res Ther. 2021; 12: 1-18
        • Chen Y
        • Xue K
        • Zhang X
        • Zheng Z
        • Liu K.
        Exosomes derived from mature chondrocytes facilitate subcutaneous stable ectopic chondrogenesis of cartilage progenitor cells.
        Stem Cell Res Ther. 2018; 9: 1-14
        • Mendt M
        • Rezvani K
        • Shpall E.
        Mesenchymal stem cell-derived exosomes for clinical use.
        Bone Marrow Transplant. 2019; 54: 789-792
        • Liu T
        • Hu W
        • Zou X
        • Xu J
        • He S
        • Chang L
        • et al.
        Human periodontal ligament stem cell-derived exosomes promote bone regeneration by altering microRNA profiles.
        Stem Cells Int. 2020; 2020
        • Yu H
        • Zhang J
        • Liu X
        • Li Y.
        microRNA-136-5p from bone marrow mesenchymal stem cell-derived exosomes facilitates fracture healing by targeting LRP4 to activate the Wnt/β-catenin pathway.
        Bone Joint Res. 2021; 10: 744-758
        • Einhorn TA.
        The Wnt signaling pathway as a potential target for therapies to enhance bone repair.
        Sci Transl Med. 2010; 2: 42ps36
        • Girón J
        • Maurmann N
        • Pranke P.
        The role of stem cell-derived exosomes in the repair of cutaneous and bone tissue.
        J Cell Biochem. 2022; 123: 183-201
        • Jiang Y
        • Zhang J
        • Li Z
        • Jia G.
        Bone marrow mesenchymal stem cell-derived exosomal miR-25 regulates the ubiquitination and degradation of Runx2 by SMURF1 to promote fracture healing in mice.
        Front Med. 2020; : 842
        • Chen S
        • Tang Y
        • Liu Y
        • Zhang P
        • Lv L
        • Zhang X
        • et al.
        Exosomes derived from miR-375-overexpressing human adipose mesenchymal stem cells promote bone regeneration.
        Cell Prolif. 2019; 52: e12669
        • Eguchi K
        • Akiba Y
        • Akiba N
        • Nagasawa M
        • Cooper LF
        • Uoshima K.
        Insulin-like growth factor binding Protein-3 suppresses osteoblast differentiation via bone morphogenetic protein-2.
        Biochem Biophys Res Commun. 2018; 507: 465-470
        • Wang Y
        • Chen W
        • Zhao L
        • Li Y
        • Liu Z
        • Gao H
        • et al.
        Obesity regulates miR-467/HoxA10 axis on osteogenic differentiation and fracture healing by BMSC-derived exosome LncRNA H19.
        J Cell Mol Med. 2021; 25: 1712-1724
        • Hassan MQ
        • Tare R
        • Lee SH
        • Mandeville M
        • Weiner B
        • Montecino M
        • et al.
        HOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes.
        Mol Cell Biol. 2007; 27: 3337-3352
        • Jia Y
        • Qiu S
        • Xu J
        • Kang Q
        • Chai Y.
        Exosomes secreted by young mesenchymal stem cells promote new bone formation during distraction osteogenesis in older rats.
        Calcif Tissue Int. 2020; 106: 509-517
        • Liu W
        • Li L
        • Rong Y
        • Qian D
        • Chen J
        • Zhou Z
        • et al.
        Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126.
        Acta Biomater. 2020; 103: 196-212
        • Jia Y
        • Zhu Y
        • Qiu S
        • Xu J
        • Chai Y.
        Exosomes secreted by endothelial progenitor cells accelerate bone regeneration during distraction osteogenesis by stimulating angiogenesis.
        Stem Cell Res Ther. 2019; 10: 1-13
        • Liang B
        • Liang J-M
        • Ding J-N
        • Xu J
        • Xu J-G
        • Chai Y-M.
        Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway.
        Stem Cell Res Ther. 2019; 10: 1-11
        • Zhang L
        • Jiao G
        • Ren S
        • Zhang X
        • Li C
        • Wu W
        • et al.
        Exosomes from bone marrow mesenchymal stem cells enhance fracture healing through the promotion of osteogenesis and angiogenesis in a rat model of nonunion.
        Stem Cell Res Ther. 2020; 11: 1-15
        • Lu G
        • Cheng P
        • Liu T
        • Wang Z.
        BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis.
        Front Cell Dev Biol. 2020; : 1416
        • Huang Y
        • He B
        • Wang L
        • Yuan B
        • Shu H
        • Zhang F
        • et al.
        Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats.
        Stem Cell Res Ther. 2020; 11: 1-16
        • Behera J
        • Kumar A
        • Voor MJ
        • Tyagi N.
        Exosomal lncRNA-H19 promotes osteogenesis and angiogenesis through mediating Angpt1/Tie2-NO signaling in CBS-heterozygous mice.
        Theranostics. 2021; 11: 7715
        • Ying C
        • Wang R
        • Wang Z
        • Tao J
        • Yin W
        • Zhang J
        • et al.
        BMSC-exosomes carry mutant HIF-1α for improving angiogenesis and osteogenesis in critical-sized calvarial defects.
        Front Bioeng Biotechnol. 2020; 8: 1341
        • Qi X
        • Zhang J
        • Yuan H
        • Xu Z
        • Li Q
        • Niu X
        • et al.
        Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats.
        Int J Biol Sci. 2016; 12: 836
        • Zhang B
        • Huang J
        • Liu J
        • Lin F
        • Ding Z
        • Xu J.
        Injectable composite hydrogel promotes osteogenesis and angiogenesis in spinal fusion by optimizing the bone marrow mesenchymal stem cell microenvironment and exosomes secretion.
        Mater Sci Eng C. 2021; 123111782
        • Wu J
        • Chen L
        • Wang R
        • Song Z
        • Shen Z
        • Zhao Y
        • et al.
        Exosomes secreted by stem cells from human exfoliated deciduous teeth promote alveolar bone defect repair through the regulation of angiogenesis and osteogenesis.
        ACS Biomater Sci Eng. 2019; 5: 3561-3571
        • Yang S
        • Zhu B
        • Yin P
        • Zhao L
        • Wang Y
        • Fu Z
        • et al.
        Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration.
        ACS Biomater Sci Eng. 2020; 6: 1590-1602
        • Wu D
        • Chang X
        • Tian J
        • Kang L
        • Wu Y
        • Liu J
        • et al.
        Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis.
        J Nanobiotechnology. 2021; 19: 1-19
        • Jensen ED
        • Schroeder TM
        • Bailey J
        • Gopalakrishnan R
        • Westendorf JJ.
        Histone deacetylase 7 associates with Runx2 and represses its activity during osteoblast maturation in a deacetylation-independent manner.
        J Bone Miner Res. 2008; 23: 361-372
        • Liu L
        • Liu Y
        • Feng C
        • Chang J
        • Fu R
        • Wu T
        • et al.
        Lithium-containing biomaterials stimulate bone marrow stromal cell-derived exosomal miR-130a secretion to promote angiogenesis.
        Biomaterials. 2019; 192: 523-536
        • Liu L
        • Yu F
        • Li L
        • Zhou L
        • Zhou T
        • Xu Y
        • et al.
        Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: release of exosomal miR-146a regulates osteogenesis and angiogenesis.
        Acta Biomater. 2021; 119: 444-457
        • Hirokawa Y
        • Tikoo A
        • Huynh J
        • Utermark T
        • Hanemann CO
        • Giovannini M
        • et al.
        A clue to the therapy of neurofibromatosis type 2: NF2/merlin is a PAK1 inhibitor.
        Cancer J. 2004; 10: 20-25
        • Seo H-H
        • Lee S-Y
        • Lee CY
        • Kim R
        • Kim P
        • Oh S
        • et al.
        Exogenous miRNA-146a enhances the therapeutic efficacy of human mesenchymal stem cells by increasing vascular endothelial growth factor secretion in the ischemia/reperfusion-injured heart.
        J Vasc Res. 2017; 54: 100-108
        • Zhang Y
        • Xie Y
        • Hao Z
        • Zhou P
        • Wang P
        • Fang S
        • et al.
        Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis.
        ACS Appl Mater Interfaces. 2021; 13: 18472-18487