Advertisement

Subacute traumatic spinal cord injury: a systematic review and network meta-analysis of therapeutic strategies based on bone marrow mesenchymal stromal cells in animal models

Published:September 15, 2022DOI:https://doi.org/10.1016/j.jcyt.2022.08.004

      Abstract

      Background aims

      To explore the optimal transplantation strategy of bone marrow mesenchymal stem cells in subacute traumatic spinal cord injury in animal experiments in order to provide reference for future animal studies and clinical research.

      Methods

      The PubMed, Embase and Web of Science databases were systematically searched (inception to January 4, 2022). Literature search, data extraction and bias assessment were performed by two independent reviewers.

      Results

      A total of 50 articles were included for analysis. Results of both traditional meta-analysis and network meta-analysis showed that high-dose (≥1 × 106) transplantation was significantly better than low-dose (<1 × 106) transplantation and intralesional transplantation was significantly better than intravenous transplantation.

      Conclusions

      Given the limited quality of evidence from current animal studies, more high-quality head-to-head comparisons are needed in the future to delve into the optimal transplantation strategy for stem cells.

      Graphical Abstract

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rubiano A.M.
        • Carney N.
        • Chesnut R.
        • Puyana J.C.
        Global neurotrauma research challenges and opportunities.
        Nature. 2015; 527: S193-S197
        • Kumar R.
        • Lim J.
        • Mekary R.A.
        • Rattani A.
        • Dewan M.C.
        • Sharif S.Y.
        • Osorio-Fonseca E.
        • Park K.B.
        Traumatic spinal injury: global epidemiology and worldwide volume.
        World neurosurgery. 2018; 113: e345-e363
        • Bloom O.
        • Herman P.E.
        • Spungen A.M.
        Systemic inflammation in traumatic spinal cord injury.
        Experimental neurology. 2020; 325113143
        • Liu S.
        • Schackel T.
        • Weidner N.
        • Puttagunta R.
        Biomaterial-supported cell transplantation treatments for spinal cord injury: challenges and perspectives.
        Frontiers in cellular neuroscience. 2018; 11: 430
        • Donovan J.
        • Kirshblum S.
        Clinical trials in traumatic spinal cord injury.
        Neurotherapeutics. 2018; 15: 654-668
        • Ashammakhi N.
        • Kim H.-J.
        • Ehsanipour A.
        • Bierman R.D.
        • Kaarela O.
        • Xue C.
        • Khademhosseini A.
        • Seidlits S.K.
        Regenerative therapies for spinal cord injury.
        Tissue Engineering Part B: Reviews. 2019; 25: 471-491
        • De Feo D.
        • Merlini A.
        • Laterza C.
        • Martino G.
        Neural stem cell transplantation in central nervous system disorders: from cell replacement to neuroprotection.
        Current opinion in neurology. 2012; 25: 322-333
        • Caplan A.
        Why are MSCs therapeutic? New data: new insight.
        The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2009; 217: 318-324
        • Park J.H.
        • Kim D.Y.
        • Sung I.Y.
        • Choi G.H.
        • Jeon M.H.
        • Kim K.K.
        • Jeon S.R.
        Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans.
        Neurosurgery. 2012; 70: 1238-1247
        • Suh H.I.
        • Min J.
        • Choi K.H.
        • Kim S.W.
        • Kim K.S.
        • Jeon S.R.
        Axonal regeneration effects of Wnt3a-secreting fibroblast transplantation in spinal cord-injured rats.
        Acta neurochirurgica. 2011; 153: 1003-1010
        • Vismara I.
        • Papa S.
        • Rossi F.
        • Forloni G.
        • Veglianese P.
        Current options for cell therapy in spinal cord injury.
        Trends in molecular medicine. 2017; 23: 831-849
        • Jin M.C.
        • Medress Z.A.
        • Azad T.D.
        • Doulames V.M.
        • Veeravagu A.
        Stem cell therapies for acute spinal cord injury in humans: a review.
        Neurosurgical focus. 2019; 46: E10
        • Muthu S.
        • Jeyaraman M.
        • Gulati A.
        • Arora A.
        Current evidence on mesenchymal stem cell therapy for traumatic spinal cord injury: Systematic review and meta-analysis.
        Cytotherapy. 2021; 23: 186-197
        • Oliveri R.S.
        • Bello S.
        • Biering-Sørensen F.
        Mesenchymal stem cells improve locomotor recovery in traumatic spinal cord injury: systematic review with meta-analyses of rat models.
        Neurobiology of disease. 2014; 62: 338-353
        • Oh S.K.
        • Choi K.H.
        • Yoo J.Y.
        • Kim D.Y.
        • Kim S.J.
        • Jeon S.R.
        A phase III clinical trial showing limited efficacy of autologous mesenchymal stem cell therapy for spinal cord injury.
        Neurosurgery. 2016; 78: 436-447
        • Karamouzian S.
        • Nematollahi-Mahani S.N.
        • Nakhaee N.
        • Eskandary H.
        Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients.
        Clinical neurology and neurosurgery. 2012; 114: 935-939
        • Alexanian A.R.
        • Fehlings M.G.
        • Zhang Z.
        • Maiman D.J.
        Transplanted Neurally Modified Bone Marrow–Derived Mesenchymal Stem Cells Promote Tissue Protection and Locomotor Recovery in Spinal Cord Injured Rats.
        Neurorehabilitation and neural repair. 2011; 25: 873-880
        • Alexanian A.R.
        • Kwok W.-M.
        • Pravdic D.
        • Maiman D.J.
        • Fehlings M.G.
        Survival of neurally induced mesenchymal cells may determine degree of motor recovery in injured spinal cord rats.
        Restorative neurology and neuroscience. 2010; 28: 761-767
        • Kjell J.
        • Olson L.
        Rat models of spinal cord injury: from pathology to potential therapies.
        Disease models & mechanisms. 2016; 9: 1125-1137
        • Rowland J.W.
        • Hawryluk G.W.
        • Kwon B.
        • Fehlings M.G.
        Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon.
        Neurosurgical focus. 2008; 25: E2
        • Ahuja C.S.
        • Wilson J.R.
        • Nori S.
        • Kotter M.
        • Druschel C.
        • Curt A.
        • Fehlings M.G.
        Traumatic spinal cord injury.
        Nature reviews Disease primers. 2017; 3: 1-21
        • Basso D.M.
        • Beattie M.S.
        • Bresnahan J.C.
        Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection.
        Experimental neurology. 1996; 139: 244-256
        • Scheff S.W.
        • Saucier D.A.
        • Cain M.E.
        A statistical method for analyzing rating scale data: the BBB locomotor score.
        Journal of neurotrauma. 2002; 19: 1251-1260
        • Morita T.
        • Sasaki M.
        • Kataoka-Sasaki Y.
        • Nakazaki M.
        • Nagahama H.
        • Oka S.
        • Oshigiri T.
        • Takebayashi T.
        • Yamashita T.
        • Kocsis J.D.
        Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury.
        Neuroscience. 2016; 335: 221-231
        • Hooijmans C.R.
        • Rovers M.M.
        • de Vries R.
        • Leenaars M.
        • Ritskes-Hoitinga M.
        • Langendam M.W.
        SYRCLE's risk of bias tool for animal studies.
        BMC medical research methodology. 2014; 14: 1-9
        • Hosseini M.
        • Yousefifard M.
        • Aziznejad H.
        • Nasirinezhad F.
        The effect of bone marrow–derived mesenchymal stem cell transplantation on allodynia and hyperalgesia in neuropathic animals: a systematic review with meta-analysis.
        Biology of Blood and Marrow Transplantation. 2015; 21: 1537-1544
        • Yousefifard M.
        • Rahimi-Movaghar V.
        • Nasirinezhad F.
        • Baikpour M.
        • Safari S.
        • Saadat S.
        • Jafari A.M.
        • Asady H.
        • Tousi S.R.
        • Hosseini M.
        Neural stem/progenitor cell transplantation for spinal cord injury treatment; A systematic review and meta-analysis.
        Neuroscience. 2016; 322: 377-397
        • Won J.-S.
        • Yeon J.Y.
        • Pyeon H.-J.
        • Noh Y.-J.
        • Hwang J.-Y.
        • Kim C.K.
        • Nam H.
        • Lee K.-H.
        • Lee S.-H.
        • Joo K.M.
        Optimal preclinical conditions for using adult human multipotent neural cells in the treatment of spinal cord injury.
        International journal of molecular sciences. 2021; 22: 2579
        • Piltti K.M.
        • Avakian S.N.
        • Funes G.M.
        • Hu A.
        • Uchida N.
        • Anderson A.J.
        • Cummings B.J.
        Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury.
        Stem cell research. 2015; 15: 341-353
        • Kumamaru H.
        • Ohkawa Y.
        • Saiwai H.
        • Yamada H.
        • Kubota K.
        • Kobayakawa K.
        • Akashi K.
        • Okano H.
        • Iwamoto Y.
        • Okada S.
        Direct isolation and RNA-seq reveal environment-dependent properties of engrafted neural stem/progenitor cells.
        Nature communications. 2012; 3: 1-13
        • Paul C.
        • Samdani A.F.
        • Betz R.R.
        • Fischer I.
        • Neuhuber B.
        Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods.
        Spine. 2009; 34: 328
        • Park H.-W.
        • Oh S.
        • Lee K.H.
        • Lee B.H.
        • Chang M.-S.
        Olig2-expressing mesenchymal stem cells enhance functional recovery after contusive spinal cord injury.
        International Journal of Stem Cells. 2018; 11: 177
        • Maeda Y.
        • Otsuka T.
        • Takeda M.
        • Okazaki T.
        • Shimizu K.
        • Kuwabara M.
        • Hosogai M.
        • Yuge L.
        • Mitsuhara T.
        Transplantation of rat cranial bone-derived mesenchymal stem cells promotes functional recovery in rats with spinal cord injury.
        Scientific reports. 2021; 11: 1-11
        • Lv C.
        • Zhang T.
        • Li K.
        • Gao K.
        Bone marrow mesenchymal stem cells improve spinal function of spinal cord injury in rats via TGF-β/Smads signaling pathway.
        Experimental and Therapeutic Medicine. 2020; 19: 3657-3663
        • Jia Y.
        • Wu D.
        • Zhang R.
        • Shuang W.
        • Sun J.
        • Hao H.
        • An Q.
        • Liu Q.
        Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.
        Neuroscience Letters. 2014; 573: 46-51
        • Veneruso V.
        • Rossi F.
        • Villella A.
        • Bena A.
        • Forloni G.
        • Veglianese P.
        Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration.
        Journal of Controlled Release. 2019; 300: 141-153
        • Moll G.
        • Rasmusson-Duprez I.
        • von Bahr L.
        • Connolly-Andersen A.M.
        • Elgue G.
        • Funke L.
        • Hamad O.A.
        • Lönnies H.
        • Magnusson P.U.
        • Sanchez J.
        Are therapeutic human mesenchymal stromal cells compatible with human blood?.
        Stem cells. 2012; 30: 1565-1574
        • Yang C.
        • Wang G.
        • Ma F.
        • Yu B.
        • Chen F.
        • Yang J.
        • Feng J.
        • Wang Q.
        Repeated injections of human umbilical cord blood-derived mesenchymal stem cells significantly promotes functional recovery in rabbits with spinal cord injury of two noncontinuous segments.
        Stem cell research & therapy. 2018; 9: 1-17
        • Shin D.A.
        • Kim J.-M.
        • Kim H.-I.
        • Yi S.
        • Ha Y.
        • Yoon D.H.
        • Kim K.N.
        Comparison of functional and histological outcomes after intralesional, intracisternal, and intravenous transplantation of human bone marrow-derived mesenchymal stromal cells in a rat model of spinal cord injury.
        Acta neurochirurgica. 2013; 155: 1943-1950
        • Takahashi Y.
        • Tsuji O.
        • Kumagai G.
        • Hara C.M.
        • Okano H.J.
        • Miyawaki A.
        • Toyama Y.
        • Okano H.
        • Nakamura M.
        Comparative study of methods for administering neural stem/progenitor cells to treat spinal cord injury in mice.
        Cell transplantation. 2011; 20: 727-739
        • Schulz K.F.
        • Chalmers I.
        • Hayes R.J.
        • Altman D.G.
        Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials.
        JAMA. 1995; 273: 408-412
        • Aguado B.A.
        • Mulyasasmita W.
        • Su J.
        • Lampe K.J.
        • Heilshorn S.C.
        Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers.
        Tissue Engineering Part A. 2012; 18: 806-815
        • Cooke M.
        • Vulic K.
        • Shoichet M.
        Design of biomaterials to enhance stem cell survival when transplanted into the damaged central nervous system.
        Soft Matter. 2010; 6: 4988-4998
        • Fischer U.M.
        • Harting M.T.
        • Jimenez F.
        • Monzon-Posadas W.O.
        • Xue H.
        • Savitz S.I.
        • Laine G.A.
        • Cox Jr C.S.
        Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect.
        Stem cells and development. 2009; 18: 683-692
        • Jung J.W.
        • Kwon M.
        • Choi J.C.
        • Shin J.W.
        • Park I.W.
        • Choi B.W.
        • Kim J.Y.
        Familial occurrence of pulmonary embolism after intravenous, adipose tissue-derived stem cell therapy.
        Yonsei medical journal. 2013; 54: 1293-1296
        • Brown D.C.
        Control of selection bias in parallel-group controlled clinical trials in dogs and cats: 97 trials (2000–2005).
        Journal of the American Veterinary Medical Association. 2006; 229: 990-993
        • Schulz K.F.
        Subverting randomization in controlled trials.
        JAMA. 1995; 274: 1456-1458
        • Higgins J.P.
        • Altman D.G.
        • Gøtzsche P.C.
        • Jüni P.
        • Moher D.
        • Oxman A.D.
        • Savović J.
        • Schulz K.F.
        • Weeks L.
        • Sterne J.A.
        The Cochrane Collaboration's tool for assessing risk of bias in randomised trials.
        BMJ. 2011; 343: 1-9
        • Jerndal M.
        • Forsberg K.
        • Sena E.S.
        • Macleod M.R.
        • O'collins V.E.
        • Linden T.
        • Nilsson M.
        • Howells D.W.
        A systematic review and meta-analysis of erythropoietin in experimental stroke.
        Journal of Cerebral Blood Flow & Metabolism. 2010; 30: 961-968
        • Korevaar D.
        • Hooft L.
        • Ter Riet G.
        Systematic reviews and meta-analyses of preclinical studies: publication bias in laboratory animal experiments.
        Laboratory animals. 2011; 45: 225-230
        • O'Connor A.M.
        • Sargeant J.M.
        Critical appraisal of studies using laboratory animal models.
        ILAR journal. 2014; 55: 405-417
      1. G. ter Riet, D.A. Korevaar, M. Leenaars, P.J. Sterk, C.J. Van Noorden, L.M. Bouter, R. Lutter, R.P.O. Elferink, L. Hooft, Publication bias in laboratory animal research: a survey on magnitude, drivers, consequences and potential solutions. PLoS One 2012;7(9):e43404.

        • Cofano F.
        • Boido M.
        • Monticelli M.
        • Zenga F.
        • Ducati A.
        • Vercelli A.
        • Garbossa D.
        Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy.
        International journal of molecular sciences. 2019; 20: 2698
        • El-Ftesi S.
        • Chang E.I.
        • Longaker M.T.
        • Gurtner G.C.
        Aging and diabetes impair the neovascular potential of adipose-derived stromal cells.
        Plastic and reconstructive surgery. 2009; 123: 475
        • Shende P.
        • Subedi M.
        Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury.
        Biomedicine & Pharmacotherapy. 2017; 91: 693-706
        • Drukker M.
        • Benvenisty N.
        The immunogenicity of human embryonic stem-derived cells.
        Trends in biotechnology. 2004; 22: 136-141
        • Volarevic V.
        • Markovic B.S.
        • Gazdic M.
        • Volarevic A.
        • Jovicic N.
        • Arsenijevic N.
        • Armstrong L.
        • Djonov V.
        • Lako M.
        • Stojkovic M.
        Ethical and safety issues of stem cell-based therapy.
        International journal of medical sciences. 2018; 15: 36