Advertisement

Hypothesis: can transfer of primary neoplasm-derived extracellular vesicles and mitochondria contribute to the development of donor cell–derived hematologic neoplasms after allogeneic hematopoietic cell transplantation?

  • Masahiro Imamura
    Correspondence
    Correspondence: Masahiro Imamura, Department of Hematology, Sapporo Hokuyu Hospital, 6-6-5-1 Higashisapporo, Shiroishi-ku, Sapporo, 003-0006, Japan.
    Affiliations
    Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
    Search for articles by this author
Published:September 01, 2022DOI:https://doi.org/10.1016/j.jcyt.2022.07.006

      Abstract

      Allogeneic hematopoietic cell transplantation (allo-HCT) is an essential treatment option for various neoplastic and non-neoplastic hematologic diseases. Although its efficacy is modest, a significant proportion of patients experience relapse, graft-versus-host disease, infection or impaired hematopoiesis. Among these, the most frequent cause of post-transplant mortality is relapse, whereas the development of de novo hematologic neoplasms from donor cells after allo-HCT occurs on some occasion as a rare complication. The mechanisms involved in the pathogenesis of the de novo hematologic neoplasms from donor cells are complex, and a multifactorial process contributes to the development of this complication. Recently, extracellular vesicles, particularly exosomes, and mitochondria have been shown to play crucial roles in intercellular communication through the transfer of specific constituents, such as deoxyribonucleic acids, ribonucleic acids, lipids, metabolites and cytosolic and cell-surface proteins. Here, I discuss the potential causative roles of these subcellular components in the development of de novo hematologic neoplasms from donor cells after allo-HCT, in addition to other etiologies.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fialkow PJ
        • Thomas ED
        • Bryant JI
        • Neiman PE.
        Leukaemic transformation of engrafted human marrow cells in vivo.
        Lancet. 1971; 1: 251-255
        • Niederwieser DW
        • Appelbaum FR
        • Gastl G
        • Gersdorf E
        • Meister B
        • Geissler D
        • et al.
        Inadvertent transmission of a donor's acute myeloid leukemia in bone marrow transplantation for chronic myelocytic leukemia.
        N Engl J Med. 1990; 322: 1794-1796
        • Witherspoon RP
        • Fisher LD
        • Schoch G
        • Martin P
        • Sullivan KM
        • Sanders J
        • et al.
        Secondary cancers after bone marrow transplantation for leukemia or aplastic anemia.
        N Engl J Med. 1989; 321: 784-789
        • Hambach L
        • Eder M
        • Dammann E
        • Battmer K
        • Stucki A
        • Heil D
        • et al.
        Donor cell-derived acute myeloid leukemia developing 14 months after matched unrelated bone marrow transplantation for chronic myeloid leukemia.
        Bone Marrow Transplant. 2001; 28: 705-707
        • Brunstein CG
        • Hirsch BA
        • Hammerschmidt D
        • McGlennen RC
        • Nguyen PL
        • Verfaillie CM.
        Leukemia in donor cells after allogeneic hematopoietic stem cell transplant.
        Bone Marrow Transplant. 2002; 29: 999-1003
        • Lawler M
        • Locasciulli A
        • Longoni D
        • Schiro R
        • McCann SR.
        Leukaemic transformation of donor cells in a patient receiving a second allogeneic bone marrow transplant for severe aplastic anaemia.
        Bone Marrow Transplant. 2002; 29: 453-456
        • Fraser CJ
        • Hirsch BA
        • Dayton V
        • Creer MH
        • Neglia P
        • Wagner JE
        • et al.
        First report of donor cell derived acute leukemia as a complication of umbilical cord blood transplantation.
        Blood. 2005; 106: 4377-4380
        • Matsunaga T
        • Murase K
        • Yoshida M
        • Fujimi A
        • Iyama S
        • Kuribayashi K
        • et al.
        Donor cell derived acute myeloid leukemia after allogeneic cord blood transplantation in a patient with adult T-cell lymphoma.
        Am J Hematol. 2005; 79: 294-298
        • Ando T
        • Yujiri T
        • Mitani N
        • Takeuchi H
        • Nomiyama J
        • Suguchi M
        • et al.
        Donor cell-derived acute myeloid leukemia after unrelated umbilical cord blood transplantation.
        Leukemia. 2006; 20: 744-745
        • Hashino S
        • Fujisawa F
        • Kondo T
        • Imamura M
        • Sato K
        • Torimoto Y
        • et al.
        Donor-type myelodysplastic syndrome with t(2;3) and monosomy 7 after allogeneic peripheral blood stem cell transplantation and liver transplantation in a patient with severe-type aplastic anemia.
        Int J Hematol. 2006; 84: 363-366
        • Shono Y
        • Kosugi-Kanaya M
        • Shiratori S
        • Sugita J
        • Fujimoto K
        • Kondo T
        • et al.
        Donor cell leukemia after umbilical cord blood transplantation: recurrent or de novo? The importance of diagnosis for therapeutic decision making.
        Int J Hematol. 2011; 93: 563-565
        • Hamaki T
        • Kajiwara K
        • Kami M
        • Murashige N
        • Funaki M
        • Harima A
        • et al.
        Donor cell-derived acute monoblastic leukemia involving MLL gene translocation in an adult patient who received umbilical cord blood transplantation.
        Bone Marrow Transplant. 2008; 41: 91-92
        • Elfenbein GJ
        • Brogaonkar DS
        • Bias WB
        • Burns WH
        • Saral R
        • Sensenbrenner LL
        • et al.
        Cytogenetic evidence for recurrence of acute myelogenous leukemia after allogeneic bone marrow transplantation in donor hematopoietic cells.
        Blood. 1978; 52: 627-636
        • Smith JL
        • Heerema NA
        • Provisor AJ.
        Leukaemic transformation of engrafted bone marrow cells.
        Br J Haematol. 1985; 60: 415-422
        • Shekhter-Levin S
        • Bloom EJ
        • Swerdlow SH
        • Sherer ME.
        • Wald N
        • Gollin SM.
        Acquired monosomy 7 in donor cells in a patient treated for acute lymphoblastic leukemia with bone marrow transplantation.
        Cancer Genet Cytogenet. 1997; 95: 190-197
        • Bielorai B
        • Deeg HJ
        • Weintraub M
        • Neumann Y
        • Rosner E
        • Amariglio N
        • et al.
        B-cell lymphoma developing in the donor 9 years after donor-origin acute myeloid leukemia post bone marrow transplantation.
        Bone Marrow Transplant. 2003; 31: 931-934
        • Boyd CN
        • Ramberg RC
        • Thomas ED.
        The incidence of recurrence of leukemia in donor cells after allogeneic bone marrow transplantation.
        Leuk Res. 1982; 6: 833-837
        • Hertenstein B
        • Hambach L
        • Bacigalupo A
        • Schmitz N
        • McCann S
        • Slavin S
        • et al.
        Development of leukemia in donor cells after allogeneic stem cell transplantation–a survey of the European Group for Blood and Marrow Transplantation (EBMT).
        Haematologica. 2005; 90: 969-975
        • Nagamura-Inoue T
        • Kodo H
        • Takahashi T
        • Mugishima H
        • Tojo A
        • Asano S.
        Four cases of donor cell-derived AML following unrelated cord blood transplantation for adult patients: experiences of the Tokyo Cord Blood Bank.
        Cytotherapy. 2007; 9: 727-728
        • Kato M
        • Yamashita T
        • Suzuki R
        • Matsumoto K
        • Nishimori H
        • Takahashi S
        • et al.
        Donor cell-derived hematological malignancy: a survey by the Japan Society for Hematopoietic Cell Transplantation.
        Leukemia. 2016; 30: 1742-1745
        • Engel N
        • Rovo A
        • Baddoglio M
        • Labopin M
        • Basak GW
        • Beguin Y
        • et al.
        for the Transplant Complications Working Party of the European Society for Blood and Marrow Transplantation. European experience and risk factor analysis of donor cell-derived leukaemias/MDS following haematopoietic cell transplantation.
        Leukemia. 2018; 33: 508-517
        • Wiseman DH.
        Donor cell leukemia: a review.
        Biol Blood Barrow Transplant. 2011; 17: 771-789
        • Suárez-González J
        • Martínez-Laperche C
        • Kwon M
        • Balsalobre P
        • Carbonell D
        • Chicano M
        • et al.
        Donor cell-derived hematologic neoplasms after hematopoietic stem cell transplantation: a systematic review.
        Biol Blood Marrow Transplant. 2018; 24: 1505-1513
        • Gibson CJ
        • Kim HT
        • Zhao L
        • Murdock M
        • Hambley B
        • Ogata A
        • et al.
        Donor clonal hematopoiesis and recipient outcome after transplantation.
        J Clin Oncol. 2021; 40: 189-201
        • Simons M
        • Raposo G.
        Exosomes-vesicular carriers for intercellular communication.
        Curr Opin Cell Biol. 2009; 21: 575-581
        • Kowal J
        • Tkach M
        • Théry C.
        Biogenesis and secretion of exosomes.
        Curr Opin Cell Biol. 2014; 29: 116-125
        • Théry C
        • Zitvogel L
        • Amigorena S.
        Exosomes: Composition, biogenesis and function.
        Nat Rev Immunol. 2002; 2: 569-579
        • van Niel G
        • D'Angelo G
        • Raposo G
        Shedding light on the cell biology of extracellular vesicles.
        Nat Rev Mol Cell. Biol. 2018; 19: 213-228
        • Kalluri R
        • LeBleu VS.
        The biology, function, and biomedical applications of exosomes.
        Science. 2020; 367: 6478
        • Panuzzo C
        • Jovanovski A
        • Pergolizzi B
        • Pironi L
        • Stanga S
        • Fava C
        • et al.
        Mitochondria: A galaxy in the hematopoietic and leukemic stem cell universe.
        Int J Mol Sci. 2020; 30: 3928
        • Baron F
        • Dresse M-F
        • Beguin Y.
        Transmission of chronic myeloid leukemia through peripheral-blood stem-cell transplantation.
        N Engl J Med. 2003; 348: 913-914
        • Berg KD
        • Brinster NK
        • Huhn KM
        • Goggins MG
        • Jones RJ
        • Makary A
        • et al.
        Transmission of a T-cell lymphoma by allogeneic bone marrow transplantation.
        N Engl J Med. 2001; 345: 1458-1463
        • Mielcarek M
        • Bryant E
        • Loken M
        • Zaucha JM
        • Torok-Storb B
        • Storb R.
        Long-term engraftment, and clonal dominance of donor-derived del(20q) hematopoietic cells after allogeneic stem cell transplantation.
        Blood. 2006; 107: 1732-1733
        • Hooper AT
        • Butler JM
        • Nolan DJ
        • Kranz A
        • Iida K
        • Kobayashi M
        • et al.
        Engraftment and regeneration of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells.
        Cell Stem Cell. 2009; 4: 263-274
        • Boyiadzis M
        • Whiteside TL
        The emerging roles of tumor-derived exosomes in hematological malignancies.
        Leukemia. 2017; 31: 1259
        • Yasuda T
        • Ueno T
        • Fukumura K
        • Yamato A
        • Ando M
        • Yamaguchi H
        • et al.
        Leukemic evolution of donor-derived cells harboring IDH2 and DNMT3A mutations after allogeneic stem cell transplantation.
        Leukemia. 2014; 28: 426-428
        • Gondek LP
        • Zheng G
        • Ghiaur G
        • DeZern AE
        • Matsui W
        • Yegnasubramanian S
        • et al.
        Donor cell leukemia arising from clonal hematopoiesis after bone marrow transplantation.
        Leukemia. 2016; 30: 1916-1920
        • University of Chicago Hematopoietic Malignancies Cancer Risk Team
        How I diagnose and manage individuals at risk for inherited myeloid malignancies.
        Blood. 2016; 128: 1800-1813
        • Drazer MW
        • Feurstein S
        • West AH
        • Jones MF
        • Churpek JE
        • Godley L.
        How I diagnose and manage individuals at risk for inherited myeloid malignancies.
        Blood. 2016; 128: 1800-1813
        • Genovese G
        • Kahler AK
        • Flannick J
        • Manning A
        • Grauman PV
        • Mar BG
        • et al.
        Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence.
        N Engl J Med. 2014; 371: 2477-2487
        • Jaiswal S
        • Fontanillas P
        • Flannick J
        • Manning A
        • Grauman PV
        • Mar BG
        • et al.
        Age-related clonal hematopoiesis associated with adverse outcomes.
        N Engl J Med. 2014; 371: 2488-2498
        • Xie A
        • Lu C
        • Wang J
        • McLellan MD
        • Johnson KJ
        • Wendl MC
        • et al.
        Age-related mutations associated with clonal hematopoietic expansion and malignancies.
        Nat Med. 2014; 20: 1472-1478
        • Loren AW
        • Porter DL
        • Stadtmauer EA
        • Tsai DE
        Post-transplant lymphoproliferative disorder: a review.
        BOne Marrow Trasnplant. 2003; 31: 145-155
        • Yasunaga J-I
        • Matsuoka M
        Human T-cell leukemia virus type I induces adult T-cell leukemia: from clinical aspects to molecular mechanisms.
        Cancer Control. 2007; 14: 133-140
        • Tamaki H
        • Matsuoka M.
        Donor-derived T cell leukemia after bone marrow transplantation.
        N Engl J Med. 2006; 35: 1758-1759
        • Liungman P
        • Lawler M
        • Asjö B
        • Bogdanovic G
        • Karlsson K
        • Malm C
        • et al.
        Infection of donor lymphocyte with human T lymphotropic virus type I (HTLV-I) following allogeneic bone marrow transplantation for HTLV-I positive adult T-cell leukemia.
        Br J Haematol. 1994; 88: 403-405
        • Izquierdo-Useros N
        • Naranjo-Gómez M
        • Archer J
        • Hatch SC
        • Erkizia I
        • Blanco J
        • et al.
        Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway.
        Blood. 2009; 113: 2732-2741
        • Docetti R.
        Cross-talk between Epstein-Barr virus and microenvironment in the pathogenesis of lymphomas.
        Stem Cancer Biol. 2015; 34: 58-69
        • El-Saghir J
        • Nassar F
        • Tawil N
        • El-Sabban M.
        ATL-derived exosomes modulate mesenchymal stem cells: potential role in leukemia progression.
        Retrovirology. 2016; 13: 73
        • Hasegawa W
        • Pond GR
        • Riflind JT
        • Messner HA
        • Lau A
        • Daly AS
        • et al.
        Long-term follow-up of secondary malignancies in adults after allogeneic bone marrow transplantation.
        Bone Marrow Trasnsplant. 2005; 35: 51-55
        • Marmont A
        • Frassoni F
        • Bacigalupo A
        • Podestá M
        • Piaggio G
        • Van Lint MT
        • et al.
        Recurrence of Ph’- positive leukemia in donor cells after marrow transplantation for chronic granulocytic leukemia.
        N Engl J Med. 1984; 310: 903-906
        • Krishnan A
        • Bhatia S
        • Slovak ML
        • Arber DA
        • Niland JC
        • Mademanee A
        • et al.
        Predictors of therapy related leukemia and myelodysplasia following autologous transplantation for lymphoma: an assessment of risk factors.
        Blood. 2000; 95: 1588-1593
        • Heeran AB
        • Berrigan HP
        • O’Sullivan J.
        The radiation-induced bystander effect (RIBE) and its connections with the hallmarks of cancer.
        Radiat Res. 2019; 192: 668-679
        • Gorman S
        • Fox E
        • O’Donoghue D
        • Sheahan K
        • Hyland J
        • Mulcahy H
        • et al.
        Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.
        J Mol Med (Berl). 2010; 88: 701-708
        • Rajendran S
        • Harrison SH
        • Thomas RA
        • Tucker JD.
        The role of mitochondria in the radiation-induced bystander effect in human lymphoblastoid cells.
        Radiat Res. 2011; 175: 159-171
        • Lynam-Lennon N
        • Maher SG
        • Maguire A
        • Phelan J
        • Muldon C
        • Reynplds JV
        • et al.
        Altered mitochondrial function and energy metabolism is associated with a radioresistant phenotype in oesophageal adenocarcinoma.
        PLoS One. 2014; 9: e100738
        • Parsons WB
        • Watkins CH
        • Pease GL
        • Childs DS.
        Changes in sternal marrow following roentogen-ray therapy to the spleen in chronic granulocytic leukemia.
        Cancer. 1954; 7: 179-189
        • Hollowell JG
        • Littlefield LG.
        Chromosome damage induced by plasma of x-rayed patients: an indirect effect of x-ray.
        Proc Soc Exp Biol Med. 1968; 129: 240-244
        • Goh K.
        Total-body irradiation and human chromosomes. IV. Cytogenetic follow-up studies 8 and 10 1/2 years after total body irradiation.
        Radiat Res. 1975; 62: 364-373
        • Little JB.
        Genomic instability and bystander effects: a historical perspective.
        Oncogene. 2003; 22: 6978-6987
        • Zhou H
        • Suzuki M
        • Randers-Pehrson G
        • Vannais D
        • Chen G
        • Trosko E
        • et al.
        Radiation risk to low fluences of alpha particles may be greater than we thought.
        Proc Natl Acad Sci USA. 2001; 98: 14410-14415
        • Scadden DT.
        The stem-cell niche as an entity of action.
        Nature. 2006; 441: 1075-1079
        • Wei Q
        • Frenette PS.
        Niches for hematopoietic stem cells and their progeny.
        Imunity. 2018; 48: 632-648
        • Pinho S
        • Frenette PS.
        Hematopoietic stem cell activity and interactions with niche.
        Nat Rev Mol Cell Biol. 2019; 20: 303-320
        • Lapidot T
        • Sirard C
        • Vormoor J
        • Murdoch B
        • Hoang T
        • Caceres-Cortes J
        • et al.
        A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.
        Nature. 1994; 367: 645-648
        • Al-Hajj M
        • Wicha MS
        • Benito-Hernandez A
        • Morrison SJ
        • Clarke MF.
        From the cover: Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Singh SK
        • Hawkins C
        • Clarke ID.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Collins AT
        • Berry PA
        • Hyde C
        • Stower MJ
        • Maitland NJ.
        Prospective identification of tumorigenic prostate cancer stem cells.
        Cancer Res. 2005; 65: 10946-10951
        • Fang D
        • Nguyen TK
        • Leishear K
        • Finko R
        • Kulp AN
        • Hotz S
        • et al.
        A tumorigenic subpopulation with stem cell properties in melanomas.
        Cancer  Res. 2005; 65: 9328-9337
        • Kim CFB
        • Jackson EL
        • Woolfenden AE
        • Lawrence S
        • Babar I
        • Vogel S
        • et al.
        Identification of bronchoalveolar stem cells in normal lung and lung cancer.
        Cell. 2005; 121: 823-835
        • Hunty BJP
        • Gilliland DG.
        Leukemia stem cells and the evolution of cancer-stem-cell research.
        Nat Rev Cancer. 2005; 5: 311-321
        • Wang JCY
        • Dick E.
        Cancer stem cells: the lessons from leukemia.
        Trends Cell Biol. 2005; 15: 494-501
        • Morrison SJ
        • Scadden DT.
        The bone marrow niche for hematopoietic stem cells.
        Nature. 2014; 505: 327-334
        • Mueller MM
        • Fusenig NE.
        Friends or foes- bipolar effects of the tumour stroma in cancer.
        Nat Rev Cancer. 2004; 4: 839-849
        • Peinado H
        • Aleckovic M
        • Lavotshkin S
        • Matei I
        • Costa-Silva B
        • Moreno-Bueno G
        • et al.
        Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET.
        Nat Med. 2012; 18: 883-891
        • Kalluri R.
        The biology and function of exosomes in cancer.
        J Clin Invest. 2016; 126: 1208-1215
        • Butler JT
        • Abdlhamed S
        • Kurre P.
        Extracellular vesicles in the hematopoietic microenvironment.
        Haematologica. 2018; 103: 382-394
        • Dunn GP
        • Bruce AT
        • Ikeda H
        • Old LJ
        • Schreiber RD.
        Cancer immunoediting: from immunosurveillance to tumor escape.
        Nat Immunol. 2002; 3: 991-998
        • Ogonek J
        • Juric MK
        • Ghimire S
        • Varanasi PR
        • Holler E
        • Greinix H
        • et al.
        Immune reconstitution after allogeneic hematopoietic stem cell transplantation.
        Front Immunol. 2016; 7: 507
        • Whiteside TL.
        Exosomes and tumor-mediated immune suppression.
        J Clin Invest. 2016; 126: 1216-1223
        • Whiteside TL.
        Immune modulation of T-cell and NK (natural killer) cell activities by TEC-derived (tumour-derived exosomes).
        Biochem Soc Tran. 2013; 4: 245-251
        • Tung SL
        • Boardman DA
        • Sen M
        • Letizia M
        • Peng Q
        • Cianci N
        • et al.
        Regulatory T cell‐derived extracellular vesicles modify dendritic cell function.
        Sci Rep. 2018; 8: 6065
        • Whiteside TL.
        The effect of tumor‐derived exosomes on immune regulation and cancer immunotherapy.
        Future Oncol. 2017; 13: 2583-2592
        • Wang DJ
        • Huang NN
        • Heppel LA.
        Extracellular ATP and ADP stimulate proliferation of porcine aortic smooth muscle cells.
        J Cell Physiol. 1992; 153: 221-233
        • Thornley I
        • Freedman MH.
        Telomeres, X-inactivation ratios, and hematopoietic stem cell transplantation in humans: a review.
        Stem Cells. 2002; 20: 198-204
        • Adamson DJ
        • King DJ
        • Haites NE.
        Significant telomere shortening in childhood leukemia.
        Cancer Genet Cytogenet. 1992; 61: 204-206
        • Melo SA
        • Sugimoto H
        • O’Connell JT
        • Kato N
        • Villanueva A
        • Vidal A.
        Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis.
        Cancer Cell. 2014; 26: 707-721
        • Le MTN
        • Hamar P
        • Guo C
        • Basar E
        • Perdigao-Henriques R
        • Balaj L.
        Mir-200-containing extracellular vesicles promote breast cancer cell metastasis.
        J Clin Invest. 2014; 124: 5109-5128
        • Parolini I
        • Federici C
        • Raggi C
        • Lugini L
        • Palleschi S
        • De Milto A.
        Microenvironmental pH is a key factor for exosome traffic in tumor cells.
        J Biol Chem. 2009; 284: 34211-34222
        • Kurcharzewska P
        • Christianson HC
        • Welch JE
        • Svensson KJ
        • Fredlund E
        • Ringnér M
        • et al.
        Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development.
        Proc Natl Acad Sci USA. 2013; 110: 7312-7317
        • Kilinic S
        • Paisner R
        • Camarda R
        • Gupta S
        • Momcilovoc O
        • Kohnz RA
        • et al.
        Oncogene‐regulated release of extracellular vesicles.
        Dev Cell. 2021; 56: 1989
        • Wenzel EM
        • Schultz SW
        • Schink KO
        • Pedersen NM
        • Nähse V
        • Carlson A
        • et al.
        Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation.
        Nat Commun. 2018; 9: 2932
        • Moller A
        • Lobb RJ.
        The evolving translational potential of small extracellular vesicles in cancer.
        Nat Rev Cancer. 2020; 20: 697-709
        • Valadi H
        • Ekström K
        • Bossios A
        • Sjöstrand M
        • Lee JJ
        • Lötval O.
        Exosome‐mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.
        Nat Cell Biol. 2007; 9: 654-659
        • Takahashi Y
        • Nishikawa M
        • Shinotsuka H
        • Matsui Y
        • Ohara S
        • Imai T.
        Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection.
        J Biotechno. 2013; 165: 77-84
        • Imai T
        • Takahashi Y
        • Nishikawa M
        • Kato K
        • Morishita M
        • Yamashita T
        • et al.
        Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from blood circulation in mice.
        J Extracell Vesicles. 2015; 4: 26238
        • Saunderson AC
        • Dunn AC
        • Crocker PR
        • McLellan AD.
        CD169 mediates the capture of exosomes in spleen and lymph node.
        Blood. 2014; 123: 208-216
        • Record M
        • Surba C
        • Sirvente-Poirot S
        • Poirot M.
        Exosomes as intercellular signalosomes and pharmacological effectors.
        Biochem Pharmacol. 2011; 81: 1171-1182
        • Chennakrishnaiah S
        • Meehan B
        • D’Asti E
        • Montermini L
        • Lee T-H
        • Karatzas N
        • et al.
        Leukocytes as a reservoir of circulating oncogenic DNA and regulatory targets of tumor-derived extracellular vesicles.
        J Thromb Haemost. 2018; 16: 1800-1813
        • Kugeratski FG
        • Hodge K
        • Lilla S
        • McAndrews KM
        • Zhou X
        • Hwang RF
        • et al.
        Quantitative proteomics identifies the core proteome of exosomes with syntenin-1 as the highest abundant protein and a putative universal biomarker.
        Nat Cell Biol. 2021; 2: 631-641
        • Hong CS
        • Muller L
        • Whiteside TL
        • Boviadzis M.
        Plasma exosomes as markers of therapeutic response in patients with acute myeloid leukemia.
        Front Immunol. 2014; 5: 160
        • Caivano A
        • Laurenzana I
        • De Luca L
        • La Rocca F
        • Simeon V
        • Trino S
        • et al.
        High serum levels of extracellular vesicles expressing malignancy-related markers are released in patients with various types of hematological neoplastic disorders.
        Tumour Biol. 2015; 36: 9739-9752
        • Hong CS
        • Funk S
        • Muller L
        • Boyiadzis M
        • Whiteside TL.
        Isolation of biologically active and morphologically intact exosomes from plasma of patients with cancer.
        J Extracell Vesicles. 2016; 5: 29289
        • Huan J
        • Hornick NI
        • Shurtleff MJ
        • Skinner AM
        • Goloviznina NA
        • Roberts CT Jr
        • et al.
        RNA trafficking by acute myelogenous leukemia exosomes.
        Cancer Res. 2013; 73: 918-929
        • Huan J
        • Hornick NI
        • Goloviznina NA
        • Kamimae-Lanning AN
        • David LL
        • Wilmarth PA
        • et al.
        Coordinate regulation of residual bone marrow function by paracrine trafficking of AML exosomes.
        Leukemia. 2015; 29: 2285-2295
        • Szczepanski MJ
        • Szajnik M
        • Welsh A
        • Whiteside TL
        • Bouiadzis M
        • et al.
        Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor beta 1.
        Haematologica. 2011; 96: 1302-1309
        • Paggetti J
        • Haderk F
        • Seiffert M
        • Janji B
        • Distler U
        • Ammerlaan W
        • et al.
        Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cell into cancer-associated fibroblasts.
        Blood. 2015; 126: 1106-1117
        • Harshman SW
        • Canella A
        • Carlariello PD
        • Rocci A
        • Agarwal K
        • Smith EM
        • et al.
        Characterization of multiple myeloma vesicles by label-free relative quantitation.
        Proteomics. 2013; 13: 3013-3029
        • Esquela-Kerscher A
        • Slack FJ.
        Oncomirs- microRNAs with a role in cancer.
        Nat Rev Cancer. 2006; 6: 259-269
        • Heneghan HM
        • Miller N
        • Kerin MJ.
        MiRNAs as biomarkers and therapeutic targets in cancer.
        Curr Opin Pharmacol. 2010; 10: 543-550
        • Lu J
        • Getz G
        • Miska EA
        • Alvarez-Saavedra E
        • Lamb J
        • Peck D
        • et al.
        MicroRNA expression profiles classify human cancers.
        Nature. 2005; 435: 834-838
        • Abdelhamed S
        • Butler JT
        • Doron B
        • Halse A
        • Nemecek E
        • Wilmarth PA
        • et al.
        Extracellular vesicles impose quiescence on residual hematopoietic stem cells in the leukemic niche.
        EMBO Rep. 2019; 20: e47546
        • Horiguchi
        • Kobune M
        • Kikuchi S
        • Yoshida M
        • Murata M
        • Murase K
        • et al.
        Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms.
        Haematologica. 2016; 101: 437-447
        • Muntión S
        • Ramos TL
        • Diez-Campelo M
        • Rosón B
        • Sánchez-Abarca LI
        • Misiewicz-Krzeminska I
        • et al.
        Microvesicles from mesenchymal stromal cells are involved in HPC-microenvironment crosstalk in myelodysplastic patients.
        PLoS One. 2016; 11: e0146722
        • Mineo M
        • Garfield SH
        • Taverna S
        • Flugy A
        • De Leo G
        • Alessandro R
        • et al.
        Exosomes released from K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion.
        Angiogenesis. 2012; 1: 33-45
        • Taverna S
        • Flugy A
        • Saieva L
        • Kohn EC
        • Santoro A
        • Meraviglia S
        • et al.
        Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis.
        Int J Cancer. 2012; 130: 2033-2043
        • Tadokoro H
        • Umezu T
        • Ohyashiki K
        • Hirano T
        • Ohyashiki JH.
        Exosomes derived from hypoxic leukemic cells enhance tube formation in endothelial cells.
        J Biol Chem. 2013; 288: 34343-34351
        • Umezu T
        • Ohyashiki K
        • Kuroda M
        • Ohyashiki JH.
        Leukemia cell to endothelial cell communication via exosomal miRNAs.
        Oncogene. 2013; 32: 2747-2755
        • Umezu T
        • Tadokoro H
        • Azuma K
        • Yoshizawa S
        • Ohyashiki K
        • Ohyashiki JH.
        Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1.
        Blood. 2014; 124: 3748-3757
        • Taverna S
        • Amodeo V
        • Saieva L
        • Russo A
        • Giallombardo M
        • De Leo G
        • et al.
        Exosomal shuttling of miR-126 in endothelial cells modulates adhesive and migratory abilities of chronic myelogenous leukemia cells.
        Mol Cancer. 2014; 13: 169
        • Corrado C
        • Raimondo S
        • Saieva L
        • Flugy AM
        • De Leo G
        • Alessandro R.
        Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells.
        Cancer Lett. 2014; 348: 71-76
        • Corrado C
        • Saieva L
        • Raimondo S
        • Santoro A
        • De Leo G
        • Alessandro R.
        Chronic myelogenous leukemia exosomes modulate bone marrow microenvironment through activation of epidermal growth factor receptor.
        J Cell Mol Med. 2016; 20: 1829-1839
        • Johnson SM
        • Dempsey C
        • Chadwick A
        • Harrison S
        • Liu J
        • Di Y
        • et al.
        Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia.
        Blood. 2016; 128: 453-456
        • Kumar B
        • Garcia M
        • Weng L
        • Jung X
        • Murakami JL
        • Hu X
        • et al.
        Acute myeloid leukemia transforms the bone marrow niche into a leukemia-microenvironment through exosome secretion.
        Leukemia. 2018; 32: 575-587
        • Jafarzadeh N
        • Safari Z
        • Pornour M
        • Amirizadeh N
        • Moghadem MF
        • Sadeghizadeh M.
        Alteration of cellular and immune-related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes.
        J Cell Physiol. 2019; 234: 3967
        • Jaworski E
        • Narayanan A
        • Van Duyne R
        • Shabbeer-Meyering S
        • Iordanskiy S
        • Saifuddin MS
        • et al.
        Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein.
        J Biol Chem. 2014; 289: 22284-22305
        • Torrabalba D
        • Baixauli E
        • Sánchez-Madrid F.
        Mitochondria know no boundaries: intercellular mitochondrial transfer.
        Front Cell Dev Biol. 2016; 4: 107
        • Hayakawa K
        • Esposito E
        • Wang X
        • Terasaki Y
        • Liu Y
        • Xing C
        • et al.
        ransfer of mitochondria from astrocytes to neurons after stroke.
        Nature. 2016; 53: 551-555
        • Osellame L
        • Blacker T
        • Duchen MR.
        Cellular and molecular mechanisms of mitochondrial function.
        Best Pract Res Clin Endocrinol Metab. 2012; 26: 711-723
        • Duchen MR
        Mitochondria and calcium: from cell signaling to cell death.
        J Physiol. 2000; 529: 57-68
        • Susin SA
        • Lorenzo HK
        • Zamzami N
        • Marzo I
        • Snow BE
        • Brothers GM
        • et al.
        Molecular characterization of mitochondrial apoptosis-inducing factor.
        Nature. 1999; 39: 441-449
        • Andersson SG
        • Zomorodipour A
        • Andersson JO
        • Sicheritz-Pontén T
        • Alsmark UC
        • Podowski RM
        • et al.
        The genome sequence of Rickettsia prowazekii and the origin of mitochondria.
        Nature. 1998; 396: 133-140
        • Fruehauf JP
        • Meyskens FL Jr.
        Reactive oxygen species: a breath of life or death?.
        Clin Cancer Res. 2007; 13: 789-794
        • Weinberg F
        • Chandel NS.
        Reactive oxygen species-dependent signaling regulates cancer.
        Cell Mol Life Sci. 2009; 66: 3663-3673
        • Lee YJ
        • Shacter E.
        Oxidative stress inhibits apoptosis in human lymphoma cells.
        J Biol Chem. 1999; 274: 19792-19798
        • Formentini L
        • Sanchez-Arago M
        • Sanchez-Cenizo L
        • Cuezva JM.
        The mitochondrial ATPase inhibitory factor 1 triggers a ROS-mediated retrograde prosurvival and proliferative response.
        Mol Cell. 2012; 45: 731-742
        • Lee SJ
        • Hwang AB
        • Kenyon C.
        Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity.
        Curr Biol. 2010; 20: 2131-2136
        • Chowdhury AR
        • Long A
        • Fuchs SY
        • Rustgi A
        • Avadhani NG.
        Mitochondrial stress-induced p53 attenuates HIF-1alpha activity by physical association and enhanced ubiquitination.
        Oncogene. 2017; 36: 397-409
        • Elmore S.
        Apoptosis: a review of programmed cell death.
        Toxicol Pathol. 2007; 35: 495-516
        • Ambros V.
        The functions of animal microRNAs.
        Nature. 2004; 43: 350-355
        • Bartel DP.
        MicroRNAs: target recognition and regulatory functions.
        Cell. 2009; 136: 215-233
        • Kloosterman WP
        • Plasterk RHA.
        The diverse functions of microRNAs in animal development and disease.
        Dev Cell. 2006; 11: 441-450
        • Bian Z
        • Li LM
        • Tang R
        • Hou DX
        • Chen X
        • Zhang CY
        • et al.
        Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions.
        Cell Res. 2010; 20: 1076-1078
        • Modica-Napolitano JS
        • Singh KK.
        Mitochondrial dysfunction in cancer.
        Mitochondrion. 2004; 4: 755-762
        • Bianchi NO
        • Bianchi MS
        • Richard GL
        Mitochondrial genome instability in human cancers.
        Mutat Res. 2001; 488: 9-23
        • Smiraglia DJ
        • Kulwaiec M
        • Bistulfi GL
        • Gupta SG
        • Singh KK.
        A novel role for mitochondria in regulating epigenetic modification in the nucleus.
        Cancer Biol Ther. 2008; 7: 1182-1190
        • Warburg O.
        On respiratory impairment in cancer cells.
        Science. 1956; 124: 269-270
        • Jazwinski SM.
        The retrograde response: when mitochondrial quality control is not enough.
        Biochim Biophys Acta. 2013; 1833: 400-409
        • Ayyasamy V
        • Singh KK.
        p53 regulates mtDNA copy number and mitocheckpoint pathway.
        J Carcinog. 2009; 8: 8
        • Lane DP.
        p53, guardian of the genome.
        Nature. 1992; 358: 15-16
        • Lan Q
        • Lim U
        • Liu CS
        • Weinstein SJ
        • Chanock S
        • Bonner MR
        • et al.
        A prospective study of mitochondrial DNA copy number and risk of non-Hodgkin lymphoma.
        Blood. 2008; 112: 4247-4249
        • Di Virglio F
        • Adinolfi E.
        Extracellular purines, purinergic receptors and tumor growth.
        Oncogene. 2017; 3: 293-303
        • North RA.
        Molecular physiology of P2X receptors.
        Physiol Rev. 2002; 82: 1013-1067
        • Ohta A
        • Gorelik E
        • Prasad SJ
        • Ronchese E
        • Lukashev D
        • Wong MK
        • et al.
        A2A adenosine receptor protects tumors from antitumor T cells.
        Proc Natl Acad Sci USA. 2006; 103: 13132-13137
        • Stagg J
        • Smyth MJ.
        Extracellular adenosine triphosphate and adenosine in cancer.
        Oncogene. 2010; 29: 5346-5358
        • Pola R
        • de Rooij B
        • Pieters R
        • den Boer ML.
        B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment.
        Blood. 2015; 126: 2404-2414
        • Moschoi R
        • Imbert V
        • Nebout M
        • Chiche J
        • Mary D
        • Prebet T
        • et al.
        Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy.
        Blood. 2016; 128: 253-264
        • Marlein CR
        • Zaitseva L
        • Piddock E
        • Robinson SD
        • Edwards DR
        • Shafat MS
        • et al.
        NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts.
        Blood. 2017; 130: 1649-1660
        • Burt R
        • Dey A
        • Aref S
        • Aguiar M
        • Akarca A
        • Bailey K
        • et al.
        Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress.
        Blood. 2019; 134: 1415-1429
        • Wang J
        • Liu X
        • Qiu Y
        • Shi Y
        • Cai J
        • Wang B
        • et al.
        Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells.
        J Hematol Oncol. 2018; 11: 11
        • Marlein CR
        • Piddock RE
        • Mistry JJ
        • Zaitseva L
        • Hellmich C
        • Horton RH
        • et al.
        CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma.
        Cancer Res. 2019; 79: 2285-2297
        • Niederweisser D
        • Gentilini C
        • Hegenbart U
        • Lange T
        • Moosmann P
        • Pӧnisch W
        • et al.
        Transmission of donor illness by stem cell transplantation: should screening be different in older donors?.
        Bone Marrow Transplant. 2004; 34: 657-665
        • Logan BR
        • Maiers MJ
        • Sparapani RA
        • Laud PW
        • Spellman SR
        • McCulloch RE
        • et al.
        Optimal donor selection for hematopoietic cell transplantation using Bayesian machine learning.
        JCO Clin Can Inform. 2021; 5: 494-507
        • Rustom A
        • Saffrich R
        • Markovic I
        • Walther P
        • Gerdes HH
        Nanotubular Highways for Intercellular Organelle Transport.
        Science. 2004; 303: 1007-1010
        • Brown S
        • Spudich JA
        Cytochalasin inhibits the rate of elongation of actin filament fragments.
        J Cell Biol. 1979; 83: 657-662
        • Johnston PB
        • Pinter-Brown LC
        • Warsi G
        • White K
        • Ramchandren R
        Phase 2 study of evrolimus for relapsed or refractory classical Hodgkin lymphoma.
        Exp Hematol Oncol. 2018; 7: 12
        • Omsland M
        • Bruserud O
        • Gjertsen BT
        • Andresen V
        Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB inhibition in acute myeloid leukemia (AML).
        Onctarget. 2017; 8: 7946-7963
        • Desir S
        • Dickson EL
        • Vogel RI
        • Thayanithy V
        • Wong P
        • Teoh D
        • et al.
        Tunneling nanotube formation is stimulated by hypoxia in ovarian cancer cells.
        Oncotarget. 2016; 43: 150-161
        • Abdallah N
        • Kumar SK
        Daratumumab in untreated newly diagnosed multiple myeloma.
        Ther Adv Hematol. 2019; 10: 156
        • Mateos M
        • Spencer A
        • Nooka AK
        • Pour L
        • Weisel K
        • Cavo M
        • et al.
        Daratumumab-based regimens are highly effective and well tolerated in relapsed or refractory multiple myeloma regardless of patient age: Subgroup analysis of the phase 3 CASTOR and POLLUX studies.
        Haematologica. 2020; 105: 468-477
        • Deaglio S
        • Mehta K
        • Malavasi F
        Human CD38: a (r)evolutionary story of enzymes and receptors.
        Leuk Res. 2001; 25: 1-12
        • Taussig DC
        • Vargaftig J
        • Miraki-Moud F
        • Griessinger E
        • Sharrock K
        • Luke T
        • et al.
        Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction.
        Blood. 2010; 115: 1976-1984
        • Sarry J-E
        • Murphy K
        • Perry R
        • Sanchez PV
        • Secreto A
        • Keefer C
        • et al.
        Human acute myelogenous leukemia stem cells are rare and heterogenous when assayed in NOD/SCID/IL2Rγc-deficient mice.
        J Clin Invest. 2011; 121: 384-395
        • Naik J
        • Themeli M
        • de Jong-Korlaar R
        • Ruiter RWJ
        • Poddighe PJ
        • Yuan H
        • et al.
        CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia.
        Hematologica. 2019; 104: e100-103
        • Scott BL
        • Pasquini MC
        • Fei M
        • Fraser R
        • Wu J
        • Devine SM
        • et al.
        Myeloablative versus reduced-intensity conditioning for hematopoietic cell transplantation in acute myelogenous leukemia and myelodysplastic syndromes -Long-term follow-up of the BMT CTN 0901 clinical trial.
        Transplant Cell Ther. 2021; 27: 483-488
        • Imamura M
        • Shigematsu A
        Allogeneic hematopoietic stem cell transplantation in adult acute lymphoblastic leukemia: potential benefit of medium dose etoposide conditioning.
        Exp Hematol Oncol. 2015; 4: 20
        • Shigematsu A
        • Kondo T
        • Yamamoto S
        • Sugita J
        • Onozawa M
        • Kahata K
        • et al.
        Excellent outcome of allogeneic hematopoietic stem cell transplantation using a conditioning regimen with medium-dose VP-16, cyclophosphamide and total body irradiation for adult patients with acute lymphoblastic leukemia.
        Biol Blood Marrow Transplant. 2008; 14: 568-575