Advertisement

Emerging advances in engineered macrophages for tumor immunotherapy

  • Author Footnotes
    † These authors contributed equally to this work.
    Jing Hu
    Footnotes
    † These authors contributed equally to this work.
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally to this work.
    Qian Yang
    Footnotes
    † These authors contributed equally to this work.
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Zhongyu Yue
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Boting Liao
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Huijuan Cheng
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Wenqi Li
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Honghua Zhang
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Shuling Wang
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Qingchang Tian
    Correspondence
    Correspondence: No.2318 Yuhangtang Road, Cangqian Street, Yuhang District, Hangzhou
    Affiliations
    College of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
    Search for articles by this author
  • Author Footnotes
    † These authors contributed equally to this work.
Published:August 23, 2022DOI:https://doi.org/10.1016/j.jcyt.2022.07.001

      Abstract

      Macrophages are versatile antigen-presenting cells. Recent studies suggest that engineered modifications of macrophages may confer better tumor therapy. Genetic engineering of macrophages with specific chimeric antigen receptors offers new possibilities for treatment of solid tumors and has received significant attention. In vitro gene editing of macrophages and infusion into the body can inhibit the immunosuppressive effect of the tumor microenvironment in solid tumors. This strategy is flexible and can be applied to all stages of cancer treatment. In contrast, nongenetic engineering tools are used to block relevant signaling pathways in immunosuppressive responses. In addition, macrophages can be loaded with drugs and engineered into cellular drug delivery systems. Here, we analyze the effect of the chimeric antigen receptor platform on macrophages and other existing engineering modifications of macrophages, highlighting their status, challenges and future perspectives. Indeed, our analyses show that new approaches in the treatment of solid tumors will likely exploit macrophages, an innate immune cell.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Yu Y.
        • Cui J.
        Present and future of cancer immunotherapy: A tumor microenvironmental perspective.
        Oncol Lett. 2018; 16: 4105-4113
        • Kennedy L.B.
        • Salama A.K.S.
        A review of cancer immunotherapy toxicity.
        CA Cancer J Clin. 2020; 70: 86-104
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • Aplenc R.
        • Barrett D.M.
        • Bunin N.J.
        • Chew A.
        • Gonzalez V.E.
        • Zheng Z.
        • Lacey S.F.
        • Mahnke Y.D.
        • Melenhorst J.J.
        • Rheingold S.R.
        • Shen A.
        • Teachey D.T.
        • Levine B.L.
        • June C.H.
        • Porter D.L.
        • Grupp S.A.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014; 371: 1507-1517
        • Kochenderfer J.N.
        • Dudley M.E.
        • Kassim S.H.
        • Somerville R.P.
        • Carpenter R.O.
        • Stetler-Stevenson M.
        • Yang J.C.
        • Phan G.Q.
        • Hughes M.S.
        • Sherry R.M.
        • Raffeld M.
        • Feldman S.
        • Lu L.
        • Li Y.F.
        • Ngo L.T.
        • Goy A.
        • Feldman T.
        • Spaner D.E.
        • Wang M.L.
        • Chen C.C.
        • Kranick S.M.
        • Nath A.
        • Nathan D.A.
        • Morton K.E.
        • Toomey M.A.
        • Rosenberg S.A.
        Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor.
        J Clin Oncol. 2015; 33: 540-549
        • Komohara Y.
        • Fujiwara Y.
        • Ohnishi K.
        • Takeya M.
        Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy.
        Adv Drug Deliv Rev. 2016; 99: 180-185
        • Noy R.
        • Pollard J.W.
        Tumor-associated macrophages: from mechanisms to therapy.
        Immunity. 2014; 41: 49-61
        • Yang H.
        • Shao R.
        • Huang H.
        • Wang X.
        • Rong Z.
        • Lin Y.
        Engineering macrophages to phagocytose cancer cells by blocking the CD47/SIRPɑ axis.
        Cancer medicine. 2019; 8: 4245-4253
        • De Palma M.
        • Lewis C.E.
        Macrophage regulation of tumor responses to anticancer therapies.
        Cancer cell. 2013; 23: 277-286
        • Shan H.
        • Dou W.
        • Zhang Y.
        • Qi M.
        Targeted ferritin nanoparticle encapsulating CpG oligodeoxynucleotides induces tumor-associated macrophage M2 phenotype polarization into M1 phenotype and inhibits tumor growth.
        Nanoscale. 2020; 12: 22268-22280
        • Zhang F.
        • Parayath N.N.
        • Ene C.I.
        • Stephan S.B.
        • Koehne A.L.
        • Coon M.E.
        • Holland E.C.
        • Stephan M.T.
        Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers.
        Nat Commun. 2019; 10: 3974
        • Chen Y.
        • Yu Z.
        • Tan X.
        • Jiang H.
        • Xu Z.
        • Fang Y.
        • Han D.
        • Hong W.
        • Wei W.
        • Tu J.
        CAR-macrophage: A new immunotherapy candidate against solid tumors.
        Biomed Pharmacother. 2021; 139111605
        • Salmaninejad A.
        • Valilou S.F.
        • Soltani A.
        • Ahmadi S.
        • Abarghan Y.J.
        • Rosengren R.J.
        • Sahebkar A.
        Tumor-associated macrophages: role in cancer development and therapeutic implications.
        Cellular oncology (Dordrecht). 2019; 42: 591-608
        • Cieslewicz M.
        • Tang J.
        • Yu J.L.
        • Cao H.
        • Zavaljevski M.
        • Motoyama K.
        • Lieber A.
        • Raines E.W.
        • Pun S.H.
        Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival.
        Proceedings of the National Academy of Sciences of the United States of America. 2013; 110: 15919-15924
        • Yang L.
        • Zhang Y.
        Tumor-associated macrophages: from basic research to clinical application.
        J Hematol Oncol. 2017; 10: 58
        • Li X.
        • Liu R.
        • Su X.
        • Pan Y.
        • Han X.
        • Shao C.
        • Shi Y.
        Harnessing tumor-associated macrophages as aids for cancer immunotherapy.
        Molecular cancer. 2019; 18: 177
        • Coussens L.M.
        • Zitvogel L.
        • Palucka A.K.
        Neutralizing tumor-promoting chronic inflammation: a magic bullet?.
        Science. 2013; 339: 286-291
        • Zhang W.
        • Liu L.
        • Su H.
        • Liu Q.
        • Shen J.
        • Dai H.
        • Zheng W.
        • Lu Y.
        • Zhang W.
        • Bei Y.
        • Shen P.
        Chimeric antigen receptor macrophage therapy for breast tumours mediated by targeting the tumour extracellular matrix.
        Br J Cancer. 2019; 121: 837-845
        • Anderson N.R.
        • Minutolo N.G.
        • Gill S.
        • Klichinsky M.
        Macrophage-Based Approaches for Cancer Immunotherapy.
        Cancer Res. 2021; 81: 1201-1208
        • Andreesen R.
        • Hennemann B.
        • Krause S.W.
        Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspectives.
        Journal of leukocyte biology. 1998; 64: 419-426
        • Lacerna Jr., L.V.
        • Stevenson G.W.
        • Stevenson H.C.
        Adoptive cancer immunotherapy utilizing lymphokine activated killer cells and gamma interferon activated killer monocytes.
        Pharmacology & therapeutics. 1988; 38: 453-465
        • Burger M.
        • Thiounn N.
        • Denzinger S.
        • Kondas J.
        • Benoit G.
        • Chapado M.S.
        • Jimenz-Cruz F.J.
        • Kisbenedek L.
        • Szabo Z.
        • Zsolt D.
        • Grimm M.O.
        • Romics I.
        • Thuroff J.W.
        • Kiss T.
        • Tombal B.
        • Wirth M.
        • Munsell M.
        • Mills B.
        • Koh T.
        • Sherman J.
        The application of adjuvant autologous antravesical macrophage cell therapy vs. BCG in non-muscle invasive bladder cancer: a multicenter, randomized trial.
        J Transl Med. 2010; 8: 54
        • Guo L.
        • Zhang Y.
        • Yang Z.
        • Peng H.
        • Wei R.
        • Wang C.
        • Feng M.
        Tunneling Nanotubular Expressways for Ultrafast and Accurate M1 Macrophage Delivery of Anticancer Drugs to Metastatic Ovarian Carcinoma.
        ACS Nano. 2019; 13: 1078-1096
        • Brempelis K.J.
        • Cowan C.M.
        • Kreuser S.A.
        • Labadie K.P.
        • Prieskorn B.M.
        • Lieberman N.A.P.
        • Ene C.I.
        • Moyes K.W.
        • Chinn H.
        • DeGolier K.R.
        • Matsumoto L.R.
        • Daniel S.K.
        • Yokoyama J.K.
        • Davis A.D.
        • Hoglund V.J.
        • Smythe K.S.
        • Balcaitis S.D.
        • Jensen M.C.
        • Ellenbogen R.G.
        • Campbell J.S.
        • Pierce R.H.
        • Holland E.C.
        • Pillarisetty V.G.
        • Crane C.A.
        Genetically engineered macrophages persist in solid tumors and locally deliver therapeutic proteins to activate immune responses.
        J Immunother Cancer. 2020; 8
        • Curren Smith E.W.
        Macrophage Polarization and Its Role in Cancer.
        Journal of Clinical & Cellular Immunology. 2015; 06
        • Yin M.
        • Shen J.
        • Yu S.
        • Fei J.
        • Zhou J.
        Tumor-Associated Macrophages (TAMs): A Critical Activator In Ovarian Cancer Metastasis.
        OncoTargets and Therapy. 2019; 12: 8687-8699
        • Qin V.M.
        • D'Souza C.
        • Neeson P.J.
        • Zhu J.J.
        Chimeric Antigen Receptor beyond CAR-T Cells.
        Cancers (Basel). 2021; 13
        • Martinez M.
        • Moon E.K.
        CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment.
        Front Immunol. 2019; 10: 128
        • D'Aloia M.M.
        • Zizzari I.G.
        • Sacchetti B.
        • Pierelli L.
        • Alimandi M.
        CAR-T cells: the long and winding road to solid tumors.
        Cell death & disease. 2018; 9: 282
        • Kingwell K.
        CAR T therapies drive into new terrain.
        Nature reviews. Drug discovery. 2017; 16: 301-304
        • Schuster S.J.
        • Svoboda J.
        • Chong E.A.
        • Nasta S.D.
        • Mato A.R.
        • Anak Ö.
        • Brogdon J.L.
        • Pruteanu-Malinici I.
        • Bhoj V.
        • Landsburg D.
        • Wasik M.
        • Levine B.L.
        • Lacey S.F.
        • Melenhorst J.J.
        • Porter D.L.
        • June C.H.
        Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas.
        The New England journal of medicine. 2017; 377: 2545-2554
        • Maude S.L.
        • Laetsch T.W.
        • Buechner J.
        • Rives S.
        • Boyer M.
        • Bittencourt H.
        • Bader P.
        • Verneris M.R.
        • Stefanski H.E.
        • Myers G.D.
        • Qayed M.
        • De Moerloose B.
        • Hiramatsu H.
        • Schlis K.
        • Davis K.L.
        • Martin P.L.
        • Nemecek E.R.
        • Yanik G.A.
        • Peters C.
        • Baruchel A.
        • Boissel N.
        • Mechinaud F.
        • Balduzzi A.
        • Krueger J.
        • June C.H.
        • Levine B.L.
        • Wood P.
        • Taran T.
        • Leung M.
        • Mueller K.T.
        • Zhang Y.
        • Sen K.
        • Lebwohl D.
        • Pulsipher M.A.
        • Grupp S.A.
        Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia.
        The New England journal of medicine. 2018; 378: 439-448
        • Mehrabadi A.Z.
        • Ranjbar R.
        • Farzanehpour M.
        • Shahriary A.
        • Dorostkar R.
        • Hamidinejad M.A.
        • Ghaleh H.E.G.
        Therapeutic potential of CAR T cell in malignancies: A scoping review.
        Biomed Pharmacother. 2022; 146112512
        • Xie G.
        • Dong H.
        • Liang Y.
        • Ham J.D.
        • Rizwan R.
        • Chen J.
        CAR-NK cells: A promising cellular immunotherapy for cancer.
        EBioMedicine. 2020; 59102975
        • Ye X.
        • Deng X.
        • Wen J.
        • Li Y.
        • Zhang M.
        • Cai Z.
        • Liu G.
        • Wang H.
        • Cai J.
        Folate Receptor-Alpha Targeted 7×19 CAR-gammadeltaT Suppressed Triple-Negative Breast Cancer Xenograft Model in Mice.
        J Oncol. 2022; (2022)2112898
        • Craddock J.A.
        • Lu A.
        • Bear A.
        • Pule M.
        • Brenner M.K.
        • Rooney C.M.
        • Foster A.E.
        Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b.
        J Immunother. 2010; 33: 780-788
        • Long K.B.
        • Young R.M.
        • Boesteanu A.C.
        • Davis M.M.
        • Melenhorst J.J.
        • Lacey S.F.
        • DeGaramo D.A.
        • Levine B.L.
        • Fraietta J.A.
        CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success.
        Front Immunol. 2018; 9: 2740
        • Bobadilla S.
        • Sunseri N.
        • Landau N.R.
        Efficient transduction of myeloid cells by an HIV-1-derived lentiviral vector that packages the Vpx accessory protein.
        Gene Ther. 2013; 20: 514-520
        • Sunseri N.
        • O'Brien M.
        • Bhardwaj N.
        • Landau N.R.
        Human immunodeficiency virus type 1 modified to package Simian immunodeficiency virus Vpx efficiently infects macrophages and dendritic cells.
        J Virol. 2011; 85: 6263-6274
        • Biswas S.K.
        • Allavena P.
        • Mantovani A.
        Tumor-associated macrophages: functional diversity, clinical significance, and open questions.
        Semin Immunopathol. 2013; 35: 585-600
        • Klichinsky M.
        • Ruella M.
        • Shestova O.
        • Lu X.M.
        • Best A.
        • Zeeman M.
        • Schmierer M.
        • Gabrusiewicz K.
        • Anderson N.R.
        • Petty N.E.
        • Cummins K.D.
        • Shen F.
        • Shan X.
        • Veliz K.
        • Blouch K.
        • Yashiro-Ohtani Y.
        • Kenderian S.S.
        • Kim M.Y.
        • O'Connor R.S.
        • Wallace S.R.
        • Kozlowski M.S.
        • Marchione D.M.
        • Shestov M.
        • Garcia B.A.
        • June C.H.
        • Gill S.
        Human chimeric antigen receptor macrophages for cancer immunotherapy.
        Nat Biotechnol. 2020; 38: 947-953
        • Franken L.
        • Schiwon M.
        • Kurts C.
        Macrophages: sentinels and regulators of the immune system.
        Cell Microbiol. 2016; 18: 475-487
        • Ritchie D.
        • Mileshkin L.
        • Wall D.
        • Bartholeyns J.
        • Thompson M.
        • Coverdale J.
        • Lau E.
        • Wong J.
        • Eu P.
        • Hicks R.J.
        • Prince H.M.
        In vivo tracking of macrophage activated killer cells to sites of metastatic ovarian carcinoma.
        Cancer immunology, immunotherapy : CII. 2007; 56: 155-163
        • Bonnans C.
        • Chou J.
        • Werb Z.
        Remodelling the extracellular matrix in development and disease.
        Nat Rev Mol Cell Biol. 2014; 15: 786-801
        • Lu P.
        • Weaver V.M.
        • Werb Z.
        The extracellular matrix: a dynamic niche in cancer progression.
        J Cell Biol. 2012; 196: 395-406
        • Bissell M.J.
        • Hines W.C.
        Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression.
        Nat Med. 2011; 17: 320-329
        • Alaseem A.
        • Alhazzani K.
        • Dondapati P.
        • Alobid S.
        • Bishayee A.
        • Rathinavelu A.
        Matrix Metalloproteinases: A challenging paradigm of cancer management.
        Semin Cancer Biol. 2019; 56: 100-115
        • Turk B.E.
        • Huang L.L.
        • Piro E.T.
        • Cantley L.C.
        Determination of protease cleavage site motifs using mixture-based oriented peptide libraries.
        Nature Biotechnology. 2001; 19: 661-667
        • Chen P.S.
        • Shih Y.W.
        • Huang H.C.
        • Cheng H.W.
        Diosgenin, a steroidal saponin, inhibits migration and invasion of human prostate cancer PC-3 cells by reducing matrix metalloproteinases expression.
        PLoS One. 2011; 6: e20164
        • Chan K.T.
        • Cortesio C.L.
        • Huttenlocher A.
        FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion.
        J Cell Biol. 2009; 185: 357-370
        • Oskarsson T.
        Extracellular matrix components in breast cancer progression and metastasis.
        Breast. 2013; 22: S66-S72
        • Deryugina E.I.
        • Quigley J.P.
        Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions.
        Biochim Biophys Acta. 2010; 1803: 103-120
        • Muntjewerff E.M.
        • Meesters L.D.
        • van den Bogaart G.
        Antigen Cross-Presentation by Macrophages.
        Front Immunol. 2020; 11: 1276
        • Colbert J.D.
        • Cruz F.M.
        • Rock K.L.
        Cross-presentation of exogenous antigens on MHC I molecules.
        Curr Opin Immunol. 2020; 64: 1-8
        • Morrissey M.A.
        • Williamson A.P.
        • Steinbach A.M.
        • Roberts E.W.
        • Kern N.
        • Headley M.B.
        • Vale R.D.
        Chimeric antigen receptors that trigger phagocytosis.
        Elife. 2018; 7
        • Hu B.
        • Guo H.
        • Zhou P.
        • Shi Z.L.
        Characteristics of SARS-CoV-2 and COVID-19.
        Nat Rev Microbiol. 2021; 19: 141-154
        • Dransfield I.
        • Zagorska A.
        • Lew E.D.
        • Michail K.
        • Lemke G.
        Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells.
        Cell Death Dis. 2015; 6: e1646
        • Fu W.
        • Lei C.
        • Ma Z.
        • Qian K.
        • Li T.
        • Zhao J.
        • Hu S.
        CAR Macrophages for SARS-CoV-2 Immunotherapy.
        Front Immunol. 2021; 12669103
        • Zhang L.
        • Tian L.
        • Dai X.
        • Yu H.
        • Wang J.
        • Lei A.
        • Zhu M.
        • Xu J.
        • Zhao W.
        • Zhu Y.
        • Sun Z.
        • Zhang H.
        • Hu Y.
        • Wang Y.
        • Xu Y.
        • Church G.M.
        • Huang H.
        • Weng Q.
        • Zhang J.
        Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions.
        J Hematol Oncol. 2020; 13: 153
        • Etzioni R.
        • Urban N.
        • Ramsey S.
        • McIntosh M.
        • Schwartz S.
        • Reid B.
        • Radich J.
        • Anderson G.
        • Hartwell L.
        The case for early detection.
        Nat Rev Cancer. 2003; 3: 243-252
        • Aalipour A.
        • Chuang H.Y.
        • Murty S.
        • D'Souza A.L.
        • Park S.M.
        • Gulati G.S.
        • Patel C.B.
        • Beinat C.
        • Simonetta F.
        • Martinic I.
        • Gowrishankar G.
        • Robinson E.R.
        • Aalipour E.
        • Zhian Z.
        • Gambhir S.S.
        Engineered immune cells as highly sensitive cancer diagnostics.
        Nat Biotechnol. 2019; 37: 531-539
        • Bailey S.R.
        • Maus M.V.
        Gene editing for immune cell therapies.
        Nat Biotechnol. 2019; 37: 1425-1434
        • Majeti R.
        • Chao M.P.
        • Alizadeh A.A.
        • Pang W.W.
        • Jaiswal S.
        • Gibbs Jr., K.D.
        • van Rooijen N.
        • Weissman I.L.
        CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells.
        Cell. 2009; 138: 286-299
        • Morrissey M.A.
        • Kern N.
        • Vale R.D.
        CD47 Ligation Repositions the Inhibitory Receptor SIRPA to Suppress Integrin Activation and Phagocytosis.
        Immunity. 2020; 53 (e6): 290-302
        • Willingham S.B.
        • Volkmer J.P.
        • Gentles A.J.
        • Sahoo D.
        • Dalerba P.
        • Mitra S.S.
        • Wang J.
        • Contreras-Trujillo H.
        • Martin R.
        • Cohen J.D.
        • Lovelace P.
        • Scheeren F.A.
        • Chao M.P.
        • Weiskopf K.
        • Tang C.
        • Volkmer A.K.
        • Naik T.J.
        • Storm T.A.
        • Mosley A.R.
        • Edris B.
        • Schmid S.M.
        • Sun C.K.
        • Chua M.S.
        • Murillo O.
        • Rajendran P.
        • Cha A.C.
        • Chin R.K.
        • Kim D.
        • Adorno M.
        • Raveh T.
        • Tseng D.
        • Jaiswal S.
        • Enger P.
        • Steinberg G.K.
        • Li G.
        • So S.K.
        • Majeti R.
        • Harsh G.R.
        • van de Rijn M.
        • Teng N.N.
        • Sunwoo J.B.
        • Alizadeh A.A.
        • Clarke M.F.
        • Weissman I.L.
        The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors.
        Proceedings of the National Academy of Sciences of the United States of America. 109. 2012: 6662-6667
        • Soto-Pantoja D.R.
        • Kaur S.
        • Roberts D.D.
        CD47 signaling pathways controlling cellular differentiation and responses to stress.
        Crit Rev Biochem Mol Biol. 2015; 50: 212-230
        • Hayat S.M.G.
        • Bianconi V.
        • Pirro M.
        • Jaafari M.R.
        • Hatamipour M.
        • Sahebkar A.
        CD47: role in the immune system and application to cancer therapy.
        Cell Oncol (Dordr). 2020; 43: 19-30
        • Zhang W.
        • Huang Q.
        • Xiao W.
        • Zhao Y.
        • Pi J.
        • Xu H.
        • Zhao H.
        • Xu J.
        • Evans C.E.
        • Jin H.
        Advances in Anti-Tumor Treatments Targeting the CD47/SIRPalpha Axis.
        Front Immunol. 2020; 11: 18
        • Lindberg F.P.
        • Bullard D.C.
        • Caver T.E.
        • Gresham H.D.
        • Beaudet A.L.
        • Brown E.J.
        Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice.
        Science (New York, N.Y.). 1996; 274: 795-798
        • Feng M.
        • Jiang W.
        • Kim B.Y.S.
        • Zhang C.C.
        • Fu Y.X.
        • Weissman I.L.
        Phagocytosis checkpoints as new targets for cancer immunotherapy.
        Nature reviews. Cancer. 2019; 19: 568-586
        • Xia Y.
        • Rao L.
        • Yao H.
        • Wang Z.
        • Ning P.
        • Chen X.
        Engineering Macrophages for Cancer Immunotherapy and Drug Delivery.
        Adv Mater. 2020; 32e2002054
        • Sikic B.I.
        • Lakhani N.
        • Patnaik A.
        • Shah S.A.
        • Chandana S.R.
        • Rasco D.
        • Colevas A.D.
        • O'Rourke T.
        • Narayanan S.
        • Papadopoulos K.
        • Fisher G.A.
        • Villalobos V.
        • Prohaska S.S.
        • Howard M.
        • Beeram M.
        • Chao M.P.
        • Agoram B.
        • Chen J.Y.
        • Huang J.
        • Axt M.
        • Liu J.
        • Volkmer J.P.
        • Majeti R.
        • Weissman I.L.
        • Takimoto C.H.
        • Supan D.
        • Wakelee H.A.
        • Aoki R.
        • Pegram M.D.
        • Padda S.K.
        First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers.
        Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2019; 37: 946-953
        • Liu J.
        • Wang L.
        • Zhao F.
        • Tseng S.
        • Narayanan C.
        • Shura L.
        • Willingham S.
        • Howard M.
        • Prohaska S.
        • Volkmer J.
        • Chao M.
        • Weissman I.L.
        • Majeti R.
        Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer Therapeutic Potential.
        PLoS One. 2015; 10e0137345
        • Advani R.
        • Flinn I.
        • Popplewell L.
        • Forero A.
        • Bartlett N.L.
        • Ghosh N.
        • Kline J.
        • Roschewski M.
        • LaCasce A.
        • Collins G.P.
        • Tran T.
        • Lynn J.
        • Chen J.Y.
        • Volkmer J.P.
        • Agoram B.
        • Huang J.
        • Majeti R.
        • Weissman I.L.
        • Takimoto C.H.
        • Chao M.P.
        • Smith S.M.
        CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma.
        N Engl J Med. 2018; 379: 1711-1721
        • Gholamin S.
        • Mitra S.S.
        • Feroze A.H.
        • Liu J.
        • Kahn S.A.
        • Zhang M.
        • Esparza R.
        • Richard C.
        • Ramaswamy V.
        • Remke M.
        • Volkmer A.K.
        • Willingham S.
        • Ponnuswami A.
        • McCarty A.
        • Lovelace P.
        • Storm T.A.
        • Schubert S.
        • Hutter G.
        • Narayanan C.
        • Chu P.
        • Raabe E.H.
        • Harsh G.
        • Taylor M.D.
        • Monje M.
        • Cho Y.-J.
        • Majeti R.
        • Volkmer J.P.
        • Fisher P.G.
        • Grant G.
        • Steinberg G.K.
        • Vogel H.
        • Edwards M.
        • Weissman I.L.
        • Cheshier S.H.
        Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors.
        Sci Transl Med. 2017; 9
        • Kauder S.E.
        • Kuo T.C.
        • Harrabi O.
        • Chen A.
        • Sangalang E.
        • Doyle L.
        • Rocha S.S.
        • Bollini S.
        • Han B.
        • Sim J.
        • Pons J.
        • Wan H.I.
        ALX148 blocks CD47 and enhances innate and adaptive antitumor immunity with a favorable safety profile.
        PLoS One. 2018; 13e0201832
        • Xu M.M.
        • Pu Y.
        • Han D.
        • Shi Y.
        • Cao X.
        • Liang H.
        • Chen X.
        • Li X.D.
        • Deng L.
        • Chen Z.J.
        • Weichselbaum R.R.
        • Fu Y.X.
        Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein alpha Signaling.
        Immunity. 2017; 47: 363-373 e5
        • Liu X.
        • Pu Y.
        • Cron K.
        • Deng L.
        • Kline J.
        • Frazier W.A.
        • Xu H.
        • Peng H.
        • Fu Y.X.
        • Xu M.M.
        CD47 blockade triggers T cell-mediated destruction of immunogenic tumors.
        Nat Med. 2015; 21: 1209-1215
        • Arai E.
        • Gotoh M.
        • Tian Y.
        • Sakamoto H.
        • Ono M.
        • Matsuda A.
        • Takahashi Y.
        • Miyata S.
        • Totsuka H.
        • Chiku S.
        • Komiyama M.
        • Fujimoto H.
        • Matsumoto K.
        • Yamada T.
        • Yoshida T.
        • Kanai Y.
        Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas.
        Int J Cancer. 2015; 137: 2589-2606
        • Wang Y.
        • Smith W.
        • Hao D.
        • He B.
        • Kong L.
        M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds.
        Int Immunopharmacol. 2019; 70: 459-466
        • He L.
        • Jhong J.H.
        • Chen Q.
        • Huang K.Y.
        • Strittmatter K.
        • Kreuzer J.
        • DeRan M.
        • Wu X.
        • Lee T.Y.
        • Slavov N.
        • Haas W.
        • Marneros A.G.
        Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors.
        Cell Rep. 2021; 37109955
        • Yanagita T.
        • Murata Y.
        • Tanaka D.
        • Motegi S.I.
        • Arai E.
        • Daniwijaya E.W.
        • Hazama D.
        • Washio K.
        • Saito Y.
        • Kotani T.
        • Ohnishi H.
        • Oldenborg P.A.
        • Garcia N.V.
        • Miyasaka M.
        • Ishikawa O.
        • Kanai Y.
        • Komori T.
        • Matozaki T.
        Anti-SIRPalpha antibodies as a potential new tool for cancer immunotherapy.
        JCI Insight. 2017; 2: e89140
        • Kohrt H.E.
        • Tumeh P.C.
        • Benson D.
        • Bhardwaj N.
        • Brody J.
        • Formenti S.
        • Fox B.A.
        • Galon J.
        • June C.H.
        • Kalos M.
        • Kirsch I.
        • Kleen T.
        • Kroemer G.
        • Lanier L.
        • Levy R.
        • Lyerly H.K.
        • Maecker H.
        • Marabelle A.
        • Melenhorst J.
        • Miller J.
        • Melero I.
        • Odunsi K.
        • Palucka K.
        • Peoples G.
        • Ribas A.
        • Robins H.
        • Robinson W.
        • Serafini T.
        • Sondel P.
        • Vivier E.
        • Weber J.
        • Wolchok J.
        • Zitvogel L.
        • Disis M.L.
        • Cheever M.A.
        Cancer Immunotherapy Trials, N., Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials.
        J Immunother Cancer. 2016; 4: 15
        • Voets E.
        • Paradé M.
        • Lutje Hulsik D.
        • Spijkers S.
        • Janssen W.
        • Rens J.
        • Reinieren-Beeren I.
        • van den Tillaart G.
        • van Duijnhoven S.
        • Driessen L.
        • Habraken M.
        • van Zandvoort P.
        • Kreijtz J.
        • Vink P.
        • van Elsas A.
        • van Eenennaam H.
        Functional characterization of the selective pan-allele anti-SIRPα antibody ADU-1805 that blocks the SIRPα-CD47 innate immune checkpoint.
        Journal for immunotherapy of cancer. 2019; 7: 340
        • Liu B.
        • Guo H.
        • Xu J.
        • Qin T.
        • Guo Q.
        • Gu N.
        • Zhang D.
        • Qian W.
        • Dai J.
        • Hou S.
        • Wang H.
        • Guo Y.
        Elimination of tumor by CD47/PD-L1 dual-targeting fusion protein that engages innate and adaptive immune responses.
        mAbs. 2018; 10: 315-324
        • Chao M.P.
        • Weissman I.L.
        • Majeti R.
        The CD47-SIRPalpha pathway in cancer immune evasion and potential therapeutic implications.
        Curr Opin Immunol. 2012; 24: 225-232
        • Zeng Q.
        • Jewell C.M.
        Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy.
        Curr Opin Biotechnol. 2019; 60: 138-145
        • Klinman D.M.
        Immunotherapeutic uses of CpG oligodeoxynucleotides.
        Nat Rev Immunol. 2004; 4: 249-258
        • Lee C
        • Bae SS
        • Joo H
        • Bae H.
        Melittin suppresses tumor progression by regulating tumor-associated macrophages in a Lewis lung carcinoma mouse model.
        Oncotarget. 2017 Jun 27; 8: 54951-54965
        • Lee C.
        • Jeong H.
        • Bae Y.
        • Shin K.
        • Kang S.
        • Kim H.
        • Oh J.
        • Bae H.
        Targeting of M2-like tumor-associated macrophages with a melittin-based pro-apoptotic peptide.
        J Immunother Cancer. 2019; 7: 147
        • Li X.
        • Tsibouklis J.
        • Weng T.
        • Zhang B.
        • Yin G.
        • Feng G.
        • Cui Y.
        • Savina I.N.
        • Mikhalovska L.I.
        • Sandeman S.R.
        • Howel C.A.
        • Mikhalovsky S.V.
        Nano carriers for drug transport across the blood-brain barrier.
        J Drug Target. 2017; 25: 17-28
        • Fan K.
        • Jia X.
        • Zhou M.
        • Wang K.
        • Conde J.
        • He J.
        • Tian J.
        • Yan X.
        Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma.
        ACS Nano. 2018; 12: 4105-4115
        • Kalgaonkar S.
        • Lonnerdal B.
        Receptor-mediated uptake of ferritin-bound iron by human intestinal Caco-2 cells.
        J Nutr Biochem. 2009; 20: 304-311
        • Wang Z.
        • Zhao Y.
        • Zhang S.
        • Chen X.
        • Sun G.
        • Zhang B.
        • Jiang B.
        • Yang Y.
        • Yan X.
        • Fan K.
        Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy.
        Theranostics. 2022; 12: 1800-1815
        • Zhang L.
        • Fischer W.
        • Pippel E.
        • Hause G.
        • Brandsch M.
        • Knez M.
        Receptor-mediated cellular uptake of nanoparticles: a switchable delivery system.
        Small. 2011; 7: 1538-1541
        • Jiang B.
        • Jia X.
        • Ji T.
        • Zhou M.
        • He J.
        • Wang K.
        • Tian J.
        • Yan X.
        • Fan K.
        Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting.
        Sci China Life Sci. 2022; 65: 328-340
        • Li W.
        • Su Z.
        • Hao M.
        • Ju C.
        • Zhang C.
        Cytopharmaceuticals: An emerging paradigm for drug delivery.
        J Control Release. 2020; 328: 313-324
        • Zhang C.
        • Pu K.
        Molecular and nanoengineering approaches towards activatable cancer immunotherapy.
        Chem Soc Rev. 2020; 49: 4234-4253
        • Hu Q.
        • Qian C.
        • Sun W.
        • Wang J.
        • Chen Z.
        • Bomba H.N.
        • Xin H.
        • Shen Q.
        • Gu Z.
        Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus.
        Adv Mater. 2016; 28: 9573-9580
        • Villa C.H.
        • Anselmo A.C.
        • Mitragotri S.
        • Muzykantov V.
        Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems.
        Adv Drug Deliv Rev. 2016; 106: 88-103
        • Ma Y.
        • Yang H.
        • Zong X.
        • Wu J.
        • Ji X.
        • Liu W.
        • Yuan P.
        • Chen X.
        • Yang C.
        • Li X.
        • Chen Y.
        • Xue W.
        • Dai J.
        Artificial M2 macrophages for disease-modifying osteoarthritis therapeutics.
        Biomaterials. 2021; 274120865
        • Gao C.
        • Huang Q.
        • Liu C.
        • Kwong C.H.T.
        • Yue L.
        • Wan J.B.
        • Lee S.M.Y.
        • Wang R.
        Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines.
        Nat Commun. 2020; 11: 2622
        • Choi MR
        • Stanton-Maxey KJ
        • Stanley JK
        • Levin CS
        • Bardhan R
        • Akin D
        • Badve S
        • Sturgis J
        • Robinson JP
        • Bashir R
        • Halas NJ
        • Clare SE
        A cellular Trojan Horse for delivery of therapeutic nanoparticles into tumors.
        Nano Lett. 2007 Dec; 7: 3759-3765
        • Zhang W.
        • Wang M.
        • Tang W.
        • Wen R.
        • Zhou S.
        • Lee C.
        • Wang H.
        • Jiang W.
        • Delahunty I.M.
        • Zhen Z.
        • Chen H.
        • Chapman M.
        • Wu Z.
        • Howerth E.W.
        • Cai H.
        • Li Z.
        • Xie J.
        Nanoparticle-Laden Macrophages for Tumor-Tropic Drug Delivery.
        Adv Mater. 2018; 30e1805557
        • Shi C.
        • Pamer E.G.
        Monocyte recruitment during infection and inflammation.
        Nature Reviews Immunology. 2011; 11: 762-774
        • Dong X.
        • Chu D.
        • Wang Z.
        Leukocyte-mediated Delivery of Nanotherapeutics in Inflammatory and Tumor Sites.
        Theranostics. 2017; 7: 751-763
        • Huang K.
        • He Y.
        • Zhu Z.
        • Guo J.
        • Wang G.
        • Deng C.
        • Zhong Z.
        Small, Traceable, Endosome-Disrupting, and Bioresponsive Click Nanogels Fabricated via Microfluidics for CD44-Targeted Cytoplasmic Delivery of Therapeutic Proteins.
        ACS Appl Mater Interfaces. 2019; 11: 22171-22180
        • Li B.
        • Xu Q.
        • Li X.
        • Zhang P.
        • Zhao X.
        • Wang Y.
        Redox-responsive hyaluronic acid nanogels for hyperthermia- assisted chemotherapy to overcome multidrug resistance.
        Carbohydr Polym. 2019; 203: 378-385
        • Xiao T.
        • Hu W.
        • Fan Y.
        • Shen M.
        • Shi X.
        Macrophage-mediated tumor homing of hyaluronic acid nanogels loaded with polypyrrole and anticancer drug for targeted combinational photothermo-chemotherapy.
        Theranostics. 2021; 11: 7057-7071
        • Li C.X.
        • Zhang Y.
        • Dong X.
        • Zhang L.
        • Liu M.D.
        • Li B.
        • Zhang M.K.
        • Feng J.
        • Zhang X.Z.
        Artificially Reprogrammed Macrophages as Tumor-Tropic Immunosuppression-Resistant Biologics to Realize Therapeutics Production and Immune Activation.
        Adv Mater. 2019; 31e1807211
        • Dong J.
        • Sereno A.
        • Aivazian D.
        • Langley E.
        • Miller B.R.
        • Snyder W.B.
        • Chan E.
        • Cantele M.
        • Morena R.
        • Joseph I.B.
        • Boccia A.
        • Virata C.
        • Gamez J.
        • Yco G.
        • Favis M.
        • Wu X.
        • Graff C.P.
        • Wang Q.
        • Rohde E.
        • Rennard R.
        • Berquist L.
        • Huang F.
        • Zhang Y.
        • Gao S.X.
        • Ho S.N.
        • Demarest S.J.
        • Reff M.E.
        • Hariharan K.
        • Glaser S.M.
        A stable IgG-like bispecific antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor demonstrates superior anti-tumor activity.
        MAbs. 2011; 3: 273-288
        • Morgillo F.
        • Lee H.Y.
        Resistance to epidermal growth factor receptor-targeted therapy.
        Drug Resist Updat. 2005; 8: 298-310
        • Kontermann R.E.
        Dual targeting strategies with bispecific antibodies.
        MAbs. 2012; 4: 182-197
        • Weiskopf K.
        • Weissman I.L.
        Macrophages are critical effectors of antibody therapies for cancer.
        MAbs. 2015; 7: 303-310
        • Jiang Z.
        • Sun H.
        • Yu J.
        • Tian W.
        • Song Y.
        Targeting CD47 for cancer immunotherapy.
        Journal of Hematology & Oncology. 2021; 14
        • Catani L.
        • Sollazzo D.
        • Ricci F.
        • Polverelli N.
        • Palandri F.
        • Baccarani M.
        • Vianelli N.
        • Lemoli R.M.
        The CD47 pathway is deregulated in human immune thrombocytopenia.
        Exp Hematol. 2011; 39: 486-494
        • Oldenborg P.A.
        Role of CD47 in erythroid cells and in autoimmunity.
        Leuk Lymphoma. 2004; 45: 1319-1327
        • Weiskopf K.
        • Ring A.M.
        • Ho C.C.M.
        • Volkmer J.-P.
        • Levin A.M.
        • Volkmer A.K.
        • Özkan E.
        • Fernhoff N.B.
        • van de Rijn M.
        • Weissman I.L.
        • Garcia K.C.
        Engineered SIRPα Variants as Immunotherapeutic Adjuvants to Anticancer Antibodies.
        Science. 2013; 341: 88-91
        • Weiskopf K.
        Cancer immunotherapy targeting the CD47/SIRPalpha axis.
        Eur J Cancer. 2017; 76: 100-109
        • Parodi A.
        • Quattrocchi N.
        • van de Ven A.L.
        • Chiappini C.
        • Evangelopoulos M.
        • Martinez J.O.
        • Brown B.S.
        • Khaled S.Z.
        • Yazdi I.K.
        • Enzo M.V.
        • Isenhart L.
        • Ferrari M.
        • Tasciotti E.
        Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions.
        Nat Nanotechnol. 2013; 8: 61-68