Advertisement

Bioengineering of the digestive tract: approaching the clinic

Published:April 08, 2021DOI:https://doi.org/10.1016/j.jcyt.2021.02.006

      Abstract

      The field of regenerative medicine is developing technologies that, in the near future, will offer alternative approaches to either cure diseases affecting the gastrointestinal tract or slow their progression by leveraging the intrinsic ability of our tissues and organs to repair after damage. This article will succinctly illustrate the three technologies that are closer to clinical translation—namely, human intestinal organoids, sphincter bioengineering and decellularization, whereby the cellular compartment of a given segment of the digestive tract is removed to obtain a scaffold consisting of the extracellular matrix. The latter will be used as a template for the regeneration of a functional organ, whereby the newly generated cellular compartment will be obtained from the patient's own cells. Although clinical application of this technology is approaching, product development challenges are being tackled to warrant safety and efficacy.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Orlando G.
        • Soker S.
        • Stratta R.J.
        Organ bioengineering and regeneration as the new Holy Grail for organ transplantation.
        Ann Surg. 2013; 258: 221-232
        • Orlando G.
        • Murphy S.V.
        • Bussolati B.
        • Clancy M.
        • Cravedi P.
        • Migliaccio G.
        • et al.
        Rethinking Regenerative Medicine From a Transplant Perspective (and Vice Versa).
        Transplantation. 2019; 103: 237-249
        • Mason C.
        • Dunnill P.
        A brief definition of regenerative medicine.
        Regen Med. 2008; 3: 1-5
        • Clevers H.
        • Conder R.K.
        • Li V.S.W.
        • Lutolf M.P.
        • Vallier L.
        • Chan S.
        • et al.
        Tissue-Engineering the Intestine: The Trials before the Trials.
        Cell Stem Cell. 2019; 24: 855-859
        • Furness J.B.
        • Callaghan B.P.
        • Rivera L.R.
        • Cho H.J.
        The enteric nervous system and gastrointestinal innervation: integrated local and central control.
        Adv Exp Med Biol. 2014; 817: 39-71
        • Ciccocioppo R.
        • Baumgart D.C.
        • Dos Santos C.C.
        • Galipeau J.
        • Klersy C.
        • Orlando G.
        Perspectives of the International Society for Cell & Gene Therapy Gastrointestinal Scientific Committee on the Intravenous Use of Mesenchymal Stromal Cells in Inflammatory Bowel Disease (PeMeGi).
        Cytotherapy. 2019; 21: 824-839
        • Mithal A.
        • Capilla A.
        • Heinze D.
        • Berical A.
        • Villacorta-Martin C.
        • Vedaie M.
        • et al.
        Generation of mesenchyme free intestinal organoids from human induced pluripotent stem cells.
        Nat Commun. 2020; 11: 215
        • Spence J.R.
        • Mayhew C.N.
        • Rankin S.A.
        • Kuhar M.F.
        • Vallance J.E.
        • Tolle K.
        • et al.
        Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro.
        Nature. 2011; 470: 105-109
        • Sinagoga K.L.
        • Wells J.M.
        Generating human intestinal tissues from pluripotent stem cells to study development and disease.
        The EMBO journal. 2015; 34: 1149-1163
        • Lake J.I.
        • Heuckeroth R.O.
        Enteric nervous system development: migration, differentiation, and disease.
        Am J Physiol Gastrointest Liver Physiol. 2013; 305: G1-G24
        • Workman M.J.
        • Mahe M.M.
        • Trisno S.
        • Poling H.M.
        • Watson C.L.
        • Sundaram N.
        • et al.
        Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system.
        Nat Med. 2017; 23: 49-59
        • Amiel J.
        • Sproat-Emison E.
        • Garcia-Barcelo M.
        • Lantieri F.
        • Burzynski G.
        • Borrego S.
        • et al.
        Hirschsprung disease, associated syndromes and genetics: a review.
        Journal of medical genetics. 2008; 45: 1-14
        • Fattahi F.
        • Steinbeck J.A.
        • Kriks S.
        • Tchieu J.
        • Zimmer B.
        • Kishinevsky S.
        • et al.
        Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease.
        Nature. 2016; 531: 105-109
        • Fu M.
        • Lui V.C.
        • Sham M.H.
        • Cheung A.N.
        • Tam P.K.
        HOXB5 expression is spatially and temporarily regulated in human embryonic gut during neural crest cell colonization and differentiation of enteric neuroblasts, developmental dynamics: an official publication of the.
        American Association of Anatomists. 2003; 228: 1-10
        • Barber K.
        • Studer L.
        • Fattahi F.
        Derivation of enteric neuron lineages from human pluripotent stem cells.
        Nature protocols. 2019; 14: 1261-1279
        • Gershon M.D.
        The enteric nervous system: a second brain.
        Hosp Pract. 1995; 34 (31-2, 35-8, 41-2 passim)
        • Lee G.
        • Kim H.
        • Elkabetz Y.
        • Al Shamy G.
        • Panagiotakos G.
        • Barberi T.
        • et al.
        Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells.
        Nature biotechnology. 2007; 25: 1468-1475
        • Bajpai R.
        • Chen D.A.
        • Rada-Iglesias A.
        • Zhang J.
        • Xiong Y.
        • Helms J.
        • et al.
        CHD7 cooperates with PBAF to control multipotent neural crest formation.
        Nature. 2010; 463: 958-962
        • Mica Y.
        • Lee G.
        • Chambers S.M.
        • Tomishima M.J.
        • Studer L.
        Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs.
        Cell Rep. 2013; 3: 1140-1152
        • Finkbeiner S.R.
        • Freeman J.J.
        • Wieck M.M.
        • El-Nachef W.
        • Altheim C.H.
        • Tsai Y.H.
        • et al.
        Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.
        Biol Open. 2015; 4: 1462-1472
        • Watson C.L.
        • Mahe M.M.
        • Munera J.
        • Howell J.C.
        • Sundaram N.
        • Poling H.M.
        • et al.
        An in vivo model of human small intestine using pluripotent stem cells.
        Nature medicine. 2014; 20: 1310-1314
        • Schlieve C.R.
        • Fowler K.L.
        • Thornton M.
        • Huang S.
        • Hajjali I.
        • Hou X.
        • et al.
        Neural Crest Cell Implantation Restores Enteric Nervous System Function and Alters the Gastrointestinal Transcriptome in Human Tissue-Engineered Small Intestine.
        Stem Cell Reports. 2017; 9: 883-896
        • Zhou J.
        • O'Connor M.D.
        • Ho V.
        The Potential for Gut Organoid Derived Interstitial Cells of Cajal in Replacement Therapy.
        Int J Mol Sci. 2017; 18: 2059
        • Rooks M.G.
        • Garrett W.S.
        Gut microbiota, metabolites and host immunity.
        Nat Rev Immunol. 2016; 16: 341-352
        • Nightingale J.M.D.
        • Paine P.
        • McLaughlin J.
        • Emmanuel A.
        • Martin J.E.
        • Lal S.
        • Small B.
        • Nutrition C.
        • N. the, G. Motility Committee of the British Society of
        The management of adult patients with severe chronic small intestinal dysmotility.
        Gut. 2020; 69: 2074-2092
        • Orlando G.
        • Dominguez-Bendala J.
        • Shupe T.
        • Bergman C.
        • Bitar K.N.
        • Booth C.
        • et al.
        Cell and organ bioengineering technology as applied to gastrointestinal diseases.
        Gut. 2013; 62: 774-786
        • Orlando G.
        • Garcia-Arraras J.E.
        • Soker T.
        • Booth C.
        • Sanders B.
        • Ross C.L.
        • et al.
        Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives.
        Dig Liver Dis. 2012; 44: 714-720
        • Daley G.Q.
        • Hyun I.
        • Apperley J.F.
        • Barker R.A.
        • Benvenisty N.
        • Bredenoord A.L.
        • et al.
        Setting Global Standards for Stem Cell Research and Clinical Translation: The 2016 ISSCR Guidelines.
        Stem Cell Reports. 2016; 6: 787-797
        • Bohl J.L.
        • Zakhem E.
        • Bitar K.N.
        Successful Treatment of Passive Fecal Incontinence in an Animal Model Using Engineered Biosphincters: A 3-Month Follow-Up Study.
        Stem Cells Transl Med. 2017; 6: 1795-1802
        • Hunt R.H.
        • Camilleri M.
        • Crowe S.E.
        • El-Omar E.M.
        • Fox J.G.
        • Kuipers E.J.
        • et al.
        The stomach in health and disease.
        Gut. 2015; 64: 1650-1668
        • Bashashati M.
        • McCallum R.W.
        Is Interstitial Cells of Cajalopathy Present in Gastroparesis?.
        J Neurogastroenterol Motil. 2015; 21: 486-493
        • Jung H.K.
        • Choung R.S.
        • Locke 3rd, G.R.
        • Schleck C.D.
        • Zinsmeister A.R.
        • Szarka L.A.
        • et al.
        The incidence, prevalence, and outcomes of patients with gastroparesis in Olmsted County, Minnesota, from 1996 to 2006.
        Gastroenterology. 2009; 136: 1225-1233
        • Farmer A.D.
        • Pedersen A.G.
        • Brock B.
        • Jakobsen P.E.
        • Karmisholt J.
        • Mohammed S.D.
        • et al.
        Gastrointestinal motility in people with type 1 diabetes and peripheral neuropathy. Reply to Marathe CS, Rayner CK, Jones KL, et al [letter].
        Diabetologia. 2017; 60: 2314-2315
        • Camilleri M.
        • Parkman H.P.
        • Shafi M.A.
        • Abell T.L.
        • Gerson L.
        American College of, Clinical guideline: management of gastroparesis.
        Am J Gastroenterol. 2013; 108 (quiz 38): 18-37
        • McCallum R.W.
        • Snape W.
        • Brody F.
        • Wo J.
        • Parkman H.P.
        • Nowak T.
        Gastric electrical stimulation with Enterra therapy improves symptoms from diabetic gastroparesis in a prospective study.
        Clin Gastroenterol Hepatol. 2010; 8 (quiz e116): 947-954
        • Zarate N.
        • Mearin F.
        • Wang X.Y.
        • Hewlett B.
        • Huizinga J.D.
        • Malagelada J.R.
        Severe idiopathic gastroparesis due to neuronal and interstitial cells of Cajal degeneration: pathological findings and management.
        Gut. 2003; 52: 966-970
        • Krishnasamy S.
        • Abell T.L.
        Diabetic Gastroparesis: Principles and Current Trends in Management.
        Diabetes Ther. 2018; 9: 1-42
        • Pan W.K.
        • Zheng B.J.
        • Gao Y.
        • Qin H.
        • Liu Y.
        Transplantation of neonatal gut neural crest progenitors reconstructs ganglionic function in benzalkonium chloride-treated homogenic rat colon.
        J Surg Res. 2011; 167: e221-e230
        • Micci M.A.
        • Learish R.D.
        • Li H.
        • Abraham B.P.
        • Pasricha P.J.
        Neural stem cells express RET, produce nitric oxide, and survive transplantation in the gastrointestinal tract.
        Gastroenterology. 2001; 121: 757-766
        • Almond S.
        • Lindley R.M.
        • Kenny S.E.
        • Connell M.G.
        • Edgar D.H.
        Characterisation and transplantation of enteric nervous system progenitor cells.
        Gut. 2007; 56: 489-496
        • Metzger M.
        • Caldwell C.
        • Barlow A.J.
        • Burns A.J.
        • Thapar N.
        Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders.
        Gastroenterology. 2009; 136 (2214-25 e1-3)
        • Zhang L.
        • Zhao B.
        • Liu W.
        • Ma R.
        • Wu R.
        • Gao Y.
        Cotransplantation of neuroepithelial stem cells with interstitial cells of Cajal improves neuronal differentiation in a rat aganglionic model.
        J Pediatr Surg. 2017; 52: 1188-1195
        • Abuin G.
        • Nieponice A.
        The first septal artery supplies the atrioventricular node.
        Tex Heart Inst J. 1998; 25: 318-319
        • Hannigan K.I.
        • Bossey A.P.
        • Foulkes H.J.L.
        • Drumm B.T.
        • Baker S.A.
        • Ward S.M.
        • et al.
        A novel intramuscular Interstitial Cell of Cajal is a candidate for generating pacemaker activity in the mouse internal anal sphincter.
        Sci Rep. 2020; 10: 10378
        • Huizinga J.D.
        • Martz S.
        • Gil V.
        • Wang X.Y.
        • Jimenez M.
        • Parsons S.
        Two independent networks of interstitial cells of Cajal work cooperatively with the enteric nervous system to create colonic motor patterns.
        Front Neurosci. 2011; 5: 93
        • Grover M.
        • Farrugia G.
        • Lurken M.S.
        • Bernard C.E.
        • Faussone-Pellegrini M.S.
        • Smyrk T.C.
        • et al.
        Cellular changes in diabetic and idiopathic gastroparesis.
        Gastroenterology. 2011; 140 (1575-85 e8)
        • Angeli T.R.
        • Cheng L.K.
        • Du P.
        • Wang T.H.
        • Bernard C.E.
        • Vannucchi M.G.
        • et al.
        Loss of Interstitial Cells of Cajal and Patterns of Gastric Dysrhythmia in Patients With Chronic Unexplained Nausea and Vomiting.
        Gastroenterology. 2015; 149 (56-66 e5)
        • Menees S.B.
        • Almario C.V.
        • Spiegel B.M.R.
        • Chey W.D.
        Prevalence of and Factors Associated With Fecal Incontinence: Results From a Population-Based Survey.
        Gastroenterology. 2018; 154 (1672-1681 e3)
        • Lindsey I.
        • Jones O.M.
        • Smilgin-Humphreys M.M.
        • Cunningham C.
        • Mortensen N.J.
        Patterns of fecal incontinence after anal surgery.
        Dis Colon Rectum. 2004; 47: 1643-1649
        • Huebner M.
        • Margulies R.U.
        • Fenner D.E.
        • Ashton-Miller J.A.
        • Bitar K.N.
        • DeLancey J.O.
        Age effects on internal anal sphincter thickness and diameter in nulliparous females.
        Dis Colon Rectum. 2007; 50: 1405-1411
        • Bliss D.Z.
        • Savik K.
        • Jung H.J.
        • Whitebird R.
        • Lowry A.
        • Sheng X.
        Dietary fiber supplementation for fecal incontinence: a randomized clinical trial.
        Res Nurs Health. 2014; 37: 367-378
        • Vasant D.H.
        • Ford A.C.
        Functional gastrointestinal disorders in inflammatory bowel disease: Time for a paradigm shift?.
        World J Gastroenterol. 2020; 26: 3712-3719
        • Whitehead W.E.
        • Rao S.S.
        • Lowry A.
        • Nagle D.
        • Varma M.
        • Bitar K.N.
        • et al.
        Treatment of fecal incontinence: state of the science summary for the National Institute of Diabetes and Digestive and Kidney Diseases workshop.
        Am J Gastroenterol. 2015; 110 (quiz 147): 138-146
        • Forte M.L.
        • Andrade K.E.
        • Lowry A.C.
        • Butler M.
        • Bliss D.Z.
        • Kane R.L.
        Systematic Review of Surgical Treatments for Fecal Incontinence.
        Dis Colon Rectum. 2016; 59: 443-469
        • Leroi A.M.
        • Siproudhis L.
        • Etienney I.
        • Damon H.
        • Zerbib F.
        • Amarenco G.
        • et al.
        Transcutaneous electrical tibial nerve stimulation in the treatment of fecal incontinence: a randomized trial (CONSORT 1a).
        Am J Gastroenterol. 2012; 107: 1888-1896
        • Tan E.
        • Ngo N.T.
        • Darzi A.
        • Shenouda M.
        • Tekkis P.P.
        Meta-analysis: sacral nerve stimulation versus conservative therapy in the treatment of faecal incontinence.
        Int J Colorectal Dis. 2011; 26: 275-294
        • Hull T.
        • Giese C.
        • Wexner S.D.
        • Mellgren A.
        • Devroede G.
        • Madoff R.D.
        • et al.
        Long-term durability of sacral nerve stimulation therapy for chronic fecal incontinence.
        Dis Colon Rectum. 2013; 56: 234-245
        • Mellgren A.
        • Matzel K.E.
        • Pollack J.
        • Hull T.
        • Bernstein M.
        • Graf W.
        Long-term efficacy of NASHA Dx injection therapy for treatment of fecal incontinence.
        Neurogastroenterol Motil. 2014; 26: 1087-1094
        • Wong M.T.
        • Meurette G.
        • Wyart V.
        • Glemain P.
        • Lehur P.A.
        The artificial bowel sphincter: a single institution experience over a decade.
        Ann Surg. 2011; 254: 951-956
        • Saldana Ruiz N.
        • Kaiser A.M.
        Fecal incontinence—challenges and solutions.
        World J Gastroenterol. 2017; 23: 11-24
        • Gohil A.J.
        • Gupta A.K.
        • Jesudason M.R.
        • Nayak S.
        Graciloplasty for Anal Incontinence—Is Electrical Stimulation Necessary?.
        Ann Plast Surg. 2019; 82: 671-678
        • Luo C.
        • Samaranayake C.B.
        • Plank L.D.
        • Bissett I.P.
        Systematic review on the efficacy and safety of injectable bulking agents for passive faecal incontinence.
        Colorectal Dis. 2010; 12: 296-303
        • Singh J.
        • Rattan S.
        Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS.
        Am J Physiol Gastrointest Liver Physiol. 2012; 303: G713-G722
        • Kajbafzadeh A.M.
        • Elmi A.
        • Talab S.S.
        • Esfahani S.A.
        • Tourchi A.
        Functional External Anal Sphincter Reconstruction for Treatment of Anal Incontinence Using Muscle Progenitor Cell Auto Grafting.
        Diseases of the Colon & Rectum. 2010; 53: 1415-1421
        • Sarveazad A.
        • Newstead G.L.
        • Mirzaei R.
        • Joghataei M.T.
        • Bakhtiari M.
        • Babahajian A.
        • et al.
        A new method for treating fecal incontinence by implanting stem cells derived from human adipose tissue: preliminary findings of a randomized double-blind clinical trial.
        Stem Cell Res Ther. 2017; 8: 40
        • Frudinger A.
        • Kolle D.
        • Schwaiger W.
        • Pfeifer J.
        • Paede J.
        • Halligan S.
        Muscle-derived cell injection to treat anal incontinence due to obstetric trauma: pilot study with 1 year follow-up.
        Gut. 2010; 59: 55-61
        • White A.B.
        • Keller P.W.
        • Acevedo J.F.
        • Word R.A.
        • Wai C.Y.
        Effect of myogenic stem cells on contractile properties of the repaired and unrepaired transected external anal sphincter in an animal model.
        Obstet Gynecol. 2010; 115: 815-823
        • Montoya T.I.
        • Acevedo J.F.
        • Smith B.
        • Keller P.W.
        • Sailors J.L.
        • Tang L.
        • et al.
        Myogenic stem cell-laden hydrogel scaffold in wound healing of the disrupted external anal sphincter.
        Int Urogynecol J. 2015; 26: 893-904
        • Oh H.K.
        • Lee H.S.
        • Lee J.H.
        • Oh S.H.
        • Lim J.Y.
        • Ahn S.
        • et al.
        Functional and histological evidence for the targeted therapy using biocompatible polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence.
        Dis Colon Rectum. 2015; 58: 517-525
        • Badylak S.F.
        • Taylor D.
        • Uygun K.
        Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds.
        Annu Rev Biomed Eng. 2011; 13: 27-53
        • Duisit J.
        • Amiel H.
        • Debluts D.
        • Maistriaux L.
        • Gerdom A.
        • Bol A.
        • et al.
        Single-Artery Human Ear Graft Procurement: A Simplified Approach.
        Plast Reconstr Surg. 2017; 140: 599-603
        • Duisit J.
        • Maistriaux L.
        • Taddeo A.
        • Orlando G.
        • Joris V.
        • Coche E.
        • et al.
        Bioengineering a Human Face Graft: The Matrix of Identity.
        Ann Surg. 2017; 266: 754-764
        • Gifford S.
        • Zambon J.P.
        • Orlando G.
        Recycling organs—growing tailor-made replacement kidneys.
        Regen Med. 2015; 10: 913-915
        • Peloso A.
        • Urbani L.
        • Cravedi P.
        • Katari R.
        • Maghsoudlou P.
        • Fallas M.E.
        • et al.
        The Human Pancreas as a Source of Protolerogenic Extracellular Matrix Scaffold for a New-generation Bioartificial Endocrine Pancreas.
        Ann Surg. 2016; 264: 169-179
        • Hillebrandt K.H.
        • Everwien H.
        • Haep N.
        • Keshi E.
        • Pratschke J.
        • Sauer I.M.
        Strategies based on organ decellularization and recellularization.
        Transpl Int. 2019; 32: 571-585
        • Hynes R.O.
        The extracellular matrix: not just pretty fibrils.
        Science. 2009; 326: 1216-1219
        • Hussey G.S.
        • Cramer M.C.
        • Badylak S.F.
        Extracellular Matrix Bioscaffolds for Building Gastrointestinal Tissue.
        Cell Mol Gastroenterol Hepatol. 2018; 5: 1-13
        • Orlando G.
        • Farney A.C.
        • Iskandar S.S.
        • Mirmalek-Sani S.H.
        • Sullivan D.C.
        • Moran E.
        • et al.
        Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations.
        Ann Surg. 2012; 256: 363-370
        • Peloso A.
        • Petrosyan A.
        • Sacco S.Da
        • Booth C.
        • Zambon J.P.
        • O'Brien T.
        Renal Extracellular Matrix Scaffolds From Discarded Kidneys Maintain Glomerular Morphometry and Vascular Resilience and Retains Critical Growth Factors.
        Transplantation. 2015; 99: 1807-1816
        • Bissell M.J.
        • Hall H.G.
        • Parry G.
        How does the extracellular matrix direct gene expression?.
        J Theor Biol. 1982; 99: 31-68
        • Ng S.L.
        • Narayanan K.
        • Gao S.
        • Wan A.C.
        Lineage restricted progenitors for the repopulation of decellularized heart.
        Biomaterials. 2011; 32: 7571-7580
        • Nakayama K.H.
        • Lee C.C.
        • Batchelder C.A.
        • Tarantal A.F.
        Tissue specificity of decellularized rhesus monkey kidney and lung scaffolds.
        PLoS One. 2013; 8: e64134
        • Song J.J.
        • Guyette J.P.
        • Gilpin S.E.
        • Gonzalez G.
        • Vacanti J.P.
        • Ott H.C.
        Regeneration and experimental orthotopic transplantation of a bioengineered kidney.
        Nat Med. 2013; 19: 646-651
        • Ross E.A.
        • Williams M.J.
        • Hamazaki T.
        • Terada N.
        • Clapp W.L.
        • Adin C.
        • et al.
        Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds.
        J Am Soc Nephrol. 2009; 20: 2338-2347
        • Nieponice A.
        • Ciotola F.F.
        • Nachman F.
        • Jobe B.A.
        • Hoppo T.
        • Londono R.
        • et al.
        Patch esophagoplasty: esophageal reconstruction using biologic scaffolds.
        Ann Thorac Surg. 2014; 97: 283-288
        • Badylak S.F.
        • Hoppo T.
        • Nieponice A.
        • Gilbert T.W.
        • Davison J.M.
        • Jobe B.A.
        Esophageal preservation in five male patients after endoscopic inner-layer circumferential resection in the setting of superficial cancer: a regenerative medicine approach with a biologic scaffold.
        Tissue Eng Part A. 2011; 17: 1643-1650
        • Badylak S.F.
        • Gilbert T.W.
        Immune response to biologic scaffold materials.
        Semin Immunol. 2008; 20: 109-116
        • Petrosyan A.
        • Sacco S.Da
        • Tripuraneni N.
        • Kreuser U.
        • Lavarreda-Pearce M.
        • Tamburrini R.
        • et al.
        A step towards clinical application of acellular matrix: a clue from macrophage polarization.
        Matrix Biol. 2017; 57-58: 334-346
        • Salvatori M.
        • Peloso A.
        • Katari R.
        • Soker S.
        • Lerut J.P.
        • Stratta R.J.
        • et al.
        Semi-xenotransplantation: the regenerative medicine-based approach to immunosuppression-free transplantation and to meet the organ demand.
        Xenotransplantation. 2015; 22: 1-6
        • Orlando G.
        • Baptista P.
        • Birchall M.
        • De Coppi P.
        • Farney A.
        • Guimaraes-Souza N.K.
        • et al.
        Regenerative medicine as applied to solid organ transplantation: current status and future challenges.
        Transpl Int. 2011; 24: 223-232
        • Orlando G.
        • Wood K.J.
        • Stratta R.J.
        • Yoo J.J.
        • Atala A.
        • Soker S.
        Regenerative medicine and organ transplantation: past, present, and future.
        Transplantation. 2011; 91: 1310-1317
        • Murphy S.V.
        • Atala A.
        3D bioprinting of tissues and organs.
        Nat Biotechnol. 2014; 32: 773-785
        • Edgar L.
        • Pu T.
        • Porter B.
        • Aziz J.M.
        • Pointe C.La
        • Asthana A.
        • et al.
        Regenerative medicine, organ bioengineering and transplantation.
        Br J Surg. 2020; 107: 793-800
        • Wu J.
        • Greely H.T.
        • Jaenisch R.
        • Nakauchi H.
        • Rossant J.
        • Belmonte J.C.
        Stem cells and interspecies chimaeras.
        Nature. 2016; 540: 51-59
        • Peloso A.
        • Katari R.
        • Tamburrini R.
        • Duisit J.
        • Orlando G.
        Glycosaminoglycans as a measure of outcome of cell-on-scaffold seeding (decellularization) technology.
        Expert Rev Med Devices. 2016; 13: 1067-1068
        • Giobbe G.G.
        • Crowley C.
        • Luni C.
        • Campinoti S.
        • Khedr M.
        • Kretzschmar K.
        • et al.
        Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture.
        Nat Commun. 2019; 10: 5658
        • Atala A.
        • Bauer S.B.
        • Soker S.
        • Yoo J.J.
        • Retik A.B.
        Tissue-engineered autologous bladders for patients needing cystoplasty.
        Lancet. 2006; 367: 1241-1246
        • Baidal D.A.
        • Ricordi C.
        • Berman D.M.
        • Alvarez A.
        • Padilla N.
        • Ciancio G.
        • et al.
        Bioengineering of an Intraabdominal Endocrine Pancreas.
        N Engl J Med. 2017; 376: 1887-1889
        • Totonelli G.
        • Maghsoudlou P.
        • Garriboli M.
        • Riegler J.
        • Orlando G.
        • Burns A.J.
        • et al.
        A rat decellularized small bowel scaffold that preserves villus-crypt architecture for intestinal regeneration.
        Biomaterials. 2012; 33: 3401-3410
        • Mertsching H.
        • Schanz J.
        • Steger V.
        • Schandar M.
        • Schenk M.
        • Hansmann J.
        • et al.
        Generation and transplantation of an autologous vascularized bioartificial human tissue.
        Transplantation. 2009; 88: 203-210
        • Carmeliet P.
        • Jain R.K.
        Angiogenesis in cancer and other diseases.
        Nature. 2000; 407: 249-257
        • Aird W.C.
        Phenotypic Heterogeneity of the Endothelium.
        Circulation Research. 2007; 100: 174-190
        • Kitano K.
        • Schwartz D.M.
        • Zhou H.
        • Gilpin S.E.
        • Wojtkiewicz G.R.
        • Ren X.
        • et al.
        Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts.
        Nat Commun. 2017; 8: 765
        • Ren X.
        • Moser P.T.
        • Gilpin S.E.
        • Okamoto T.
        • Wu T.
        • Tapias L.F.
        • et al.
        Engineering pulmonary vasculature in decellularized rat and human lungs.
        Nature Biotechnology. 2015; 33: 1097-1102
        • Ott H.C.
        • Clippinger B.
        • Conrad C.
        • Schuetz C.
        • Pomerantseva I.
        • Ikonomou L.
        • et al.
        Regeneration and orthotopic transplantation of a bioartificial lung.
        Nat Med. 2010; 16: 927-933
        • Song J.J.
        • Guyette J.P.
        • Gilpin S.E.
        • Gonzalez G.
        • Vacanti J.P.
        • Ott H.C.
        Regeneration and experimental orthotopic transplantation of a bioengineered kidney.
        Nat Med. 2013; 19: 646-651
        • Petersen T.H.
        • Calle E.A.
        • Zhao L.
        • Lee E.J.
        • Gui L.
        • Raredon M.B.
        • et al.
        Tissue-Engineered Lungs for In Vivo Implantation.
        Science. 2010; 329: 538-541
        • Grigoryan B.
        • Paulsen S.J.
        • Corbett D.C.
        • Sazer D.W.
        • Fortin C.L.
        • Zaita A.J.
        • et al.
        Multivascular networks and functional intravascular topologies within biocompatible hydrogels.
        Science. 2019; 364: 458-464
        • Marcu R.
        • Choi Y.J.
        • Xue J.
        • Fortin C.L.
        • Wang Y.
        • Nagao R.J.
        • et al.
        Human Organ-Specific Endothelial Cell Heterogeneity.
        iScience. 2018; 4: 20-35
        • Lippmann E.S.
        • Azarin S.M.
        • Kay J.E.
        • Nessler R.A.
        • Wilson H.K.
        • Al-Ahmad A.
        • et al.
        Derivation of blood–brain barrier endothelial cells from human pluripotent stem cells.
        Nat Biotech. 2012; 30: 783-791
        • De Vos P.
        • De Haan B.J.
        • Van Schilfgaarde R.
        Upscaling the production of microencapsulated pancreatic islets.
        Biomaterials. 1997; 18: 1085-1090
        • Lechanteur C.
        • Briquet A.
        • Giet O.
        • Delloye O.
        • Baudoux E.
        • Beguin Y.
        Clinical-scale expansion of mesenchymal stromal cells: a large banking experience.
        J Transl Med. 2016; 14: 145
        • Wang K.
        • Lin R.Z.
        • Melero-Martin J.M.
        Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources.
        Cell Mol Life Sci. 2019; 76: 421-439
        • Rego S.L.
        • Zakhem E.
        • Orlando G.
        • Bitar K.N.
        Bioengineered Human Pyloric Sphincters Using Autologous Smooth Muscle and Neural Progenitor Cells.
        Tissue Eng Part A. 2016; 22: 151-160