Advertisement

Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles

Published:April 09, 2021DOI:https://doi.org/10.1016/j.jcyt.2021.01.001

      Abstract

      Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50–200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex “work-in-progress” MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Galipeau J.
        • Sensebe L.
        Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities.
        Cell Stem Cell. 2018; 22: 824-833
        • Haynesworth S.E.
        • Baber M.A.
        • Caplan A.I.
        Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha.
        J Cell Physiol. 1996; 166: 585-592
        • Caplan A.I.
        • Dennis J.E.
        Mesenchymal stem cells as trophic mediators.
        J Cell Biochem. 2006; 98: 1076-1084
        • Timmers L.
        • Lim S.K.
        • Arslan F.
        • Armstrong J.S.
        • Hoefer I.E.
        • Doevendans P.A.
        Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium.
        Stem Cell Res. 2007; 1: 129-137
        • Lai R.C.
        • Arslan F.
        • Lee M.M.
        • Sze N.S.
        • Choo A.
        • Chen T.S.
        • et al.
        Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury.
        Stem Cell Res. 2010; 4: 214-222
        • Bruno S.
        • Grange C.
        • Deregibus M.C.
        • Calogero R.A.
        • Saviozzi S.
        • Collino F.
        • et al.
        Mesenchymal stem cell-derived microvesicles protect against acute tubular injury.
        J Am Soc Nephrol. 2009; 20: 1053-1067
        • Doeppner T.R.
        • Herz J.
        • Gorgens A.
        • Schlechter J.
        • Ludwig A.K.
        • Radtke S.
        • et al.
        Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression.
        Stem Cells Transl Med. 2015; 4: 1131-1143
        • He J.
        • Wang Y.
        • Sun S.
        • Yu M.
        • Wang C.
        • Pei X.
        • et al.
        Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model.
        Nephrology. 2012; 17: 493-500
        • Lener T.
        • Gimona M.
        • Aigner L.
        • Borger V.
        • Buzas E.
        • Camussi G.
        • et al.
        Applying extracellular vesicles based therapeutics in clinical trials—an ISEV position paper.
        J Extracell Vesicles. 2015; 4: 30087
        • Kordelas L.
        • Rebmann V.
        • Ludwig A.K.
        • Radtke S.
        • Ruesing J.
        • Doeppner T.R.
        • et al.
        MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease.
        Leukemia. 2014; 28: 970-973
        • Warnecke A.
        • Harre J.
        • Staecker H.
        • Prenzler N.
        • Strunk D.
        • Couillard-Despres S.
        • et al.
        Extracellular vesicles from human multipotent stromal cells protect against hearing loss after noise trauma in vivo.
        Clin Transl Med. 2020; 10: e262
        • Nassar W.
        • El-Ansary M.
        • Sabry D.
        • Mostafa M.A.
        • Fayad T.
        • Kotb E.
        • et al.
        Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases.
        Biomater Res. 2016; 20: 21
        • Sengupta V.
        • Sengupta S.
        • Lazo A.
        • Woods P.
        • Nolan A.
        • Bremer N.
        Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19.
        Stem cells and development. 2020; 29: 747-754
        • Witwer K.W.
        • Van Balkom B.W.M.
        • Bruno S.
        • Choo A.
        • Dominici M.
        • Gimona M.
        • et al.
        Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications.
        Journal of extracellular vesicles. 2019; 8: 1609206
        • Phinney D.G.
        Functional heterogeneity of mesenchymal stem cells: implications for cell therapy.
        J Cell Biochem. 2012; 113: 2806-2812
        • Vogel W.
        • Grunebach F.
        • Messam C.A.
        • Kanz L.
        • Brugger W.
        • Buhring H.J.
        Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells.
        Haematologica. 2003; 88: 126-133
        • Phinney D.G.
        • Kopen G.
        • Righter W.
        • Webster S.
        • Tremain N.
        • Prockop D.J.
        Donor variation in the growth properties and osteogenic potential of human marrow stromal cells.
        J Cell Biochem. 1999; 75: 424-436
        • Radtke S.
        • Gorgens A.
        • Liu B.
        • Horn P.A.
        • Giebel B.
        Human mesenchymal and murine stromal cells support human lympho-myeloid progenitor expansion but not maintenance of multipotent haematopoietic stem and progenitor cells.
        Cell Cycle. 2016; 15: 540-545
        • Théry C.
        • Witwer K.W.
        • Aikawa E.
        • Alcaraz M.J.
        • Anderson J.D.
        • Andriantsitohaina R.
        • et al.
        Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.
        Journal of Extracellular Vesicles. 2018; 71535750
        • Chen T.S.
        • Arslan F.
        • Yin Y.
        • Tan S.S.
        • Lai R.C.
        • Choo A.B.
        • et al.
        Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs.
        J Transl Med. 2011; 9: 47
        • Chen T.S.
        • Yeo R.W.Y.
        • Arslan F.
        • Yin Y.
        • Tan S.S.
        • Lai R.C.
        • et al.
        Efficiency of Exosome Production Correlates Inversely with the Developmental Maturity of MSC Donors.
        Journal of Stem Cell Research & Therapy. 2013; 3: 145
        • Monguió-Tortajada M.
        • Gálvez-Montón C.
        • Bayes-Genis A.
        • Roura S.
        • Borràs F.E.
        Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography.
        Cellular and Molecular Life Sciences. 2019; 76: 2369-2382
        • Reiner A.T.
        • Witwer K.W.
        • van Balkom B.W.M.
        • de Beer J.
        • Brodie C.
        • Corteling R.L.
        • et al.
        Concise Review: Developing Best-Practice Models for the Therapeutic Use of Extracellular Vesicles.
        Stem cells translational medicine. 2017; 6: 1730-1739
        • Lai R.C.
        • Tan S.S.
        • Yeo R.W.
        • Choo A.B.
        • Reiner A.T.
        • Su Y.
        • et al.
        MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA.
        J Extracell Vesicles. 2016; 5: 29828
        • Dominici M.
        • Blanc K.Le
        • Mueller I.
        • Slaper-Cortenbach I.
        • Marini F.
        • Krause D.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
        • van Balkom B.W.M.
        • Gremmels H.
        • Giebel B.
        • Lim S.K.
        Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles.
        Proteomics. 2019; 19e1800163
        • Wang C.
        • Börger V.
        • Sardari M.
        • Murke F.
        • Skuljec J.
        • Pul R.
        Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Induce Ischemic Neuroprotection by Modulating Leukocytes and Specifically Neutrophils.
        Stroke. 2020; 51: 1825-1834
        • Takov K.
        • Yellon D.M.
        • Davidson S.M.
        Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes.
        J Extracell Vesicles. 2017; 61388731
        • Pužar Dominkuš P.
        • Stenovec M.
        • Sitar S.
        • Lasič E.
        • Zorec R.
        • Plemenitaš A.
        • et al.
        PKH26 labeling of extracellular vesicles: characterization and cellular internalization of contaminating PKH26 nanoparticles.
        Biochimica et Biophysica Acta (BBA) - Biomembranes. 2018; 1860: 1350-1361
      1. A. Morales-Kastresana, B. Telford, T.A. Musich, K. McKinnon, C. Clayborne, Z. Braig, et al. Labeling Extracellular Vesicles for Nanoscale Flow Cytometry, Scientific Reports 7(1) (2017) 1878.

        • Ludwig A.K.
        • De Miroschedji K.
        • Doeppner T.R.
        • Borger V.
        • Ruesing J.
        • Rebmann V.
        • et al.
        Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales.
        J Extracell Vesicles. 2018; 71528109
        • Chuo S.T.-Y.
        • Chien J.C.-Y.
        • Lai C.P.-K.
        Imaging extracellular vesicles: current and emerging methods.
        Journal of Biomedical Science. 2018; 25: 91
        • Yi Y.W.
        • Lee J.H.
        • Kim S.-Y.
        • Pack C.-G.
        • Ha D.H.
        • Park S.R.
        • et al.
        Advances in Analysis of Biodistribution of Exosomes by Molecular Imaging.
        International journal of molecular sciences. 2020; 21: 665
        • Bruno S.
        • Tapparo M.
        • Collino F.
        • Chiabotto G.
        • Deregibus M.C.
        • Soares Lindoso R.
        • et al.
        Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells.
        Tissue Engineering Part A. 2017; 23: 1262-1273
        • Arslan F.
        • Lai R.C.
        • Smeets M.B.
        • Akeroyd L.
        • Choo A.
        • Aguor E.N.
        • et al.
        Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury.
        Stem Cell Res. 2013; 10: 301-312
      2. Lai R.C. et al. (2013) Mesenchymal Stem Cell Exosomes: The Future MSC-Based Therapy? In: Chase L., Vemuri M. (eds) Mesenchymal Stem Cell Therapy. Stem Cell Biology and Regenerative Medicine. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-200-1_3.

        • Lai R.C.
        • Tan S.S.
        • Teh B.J.
        • Sze S.K.
        • Arslan F.
        • de Kleijn D.P.
        • et al.
        Proteolytic Potential of the MSC Exosome Proteome: Implications for an Exosome-Mediated Delivery of Therapeutic Proteasome.
        Int J Proteomics. 2012; 2012971907
      3. EMEA, ICH Topic Q 6 B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products CPMP/ICH/365/96 (1999). EMeA document.