Short Communication

International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19

Verena Börger1,1, Daniel J. Weiss2,1, Johnathon D. Anderson3, Francesc E. Borràs4, Benedetta Bussolati5, David R.F. Carter6, Massimo Dominici7, Juan M. Falcón-Pérez8,9,10, Mario Gimona11, Andrew F. Hill12, Andrew M. Hoffman13, Dominique de Kleijn14, Bruce L. Levine15, Rebecca Lim16, Jan Lötvall17, S. Alex Mitsuishi18, Marta Mongiò-Tortajada19, Maurizio Muraca20, Rienk Nieuwland21, Anna Nowocin22, Lorraine O’Driscoll23, Luis A. Ortiz24, Donald G Phinney25, Ilona Reischl26, Eva Rohde27,28, Ralf Sanzenbacher29, Clotilde Théry30, Wei Seong Toh31, Kenneth W. Witwer32,33,* Sai Kiang Lim34,* Bernd Giebel1,*

1 Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
2 Department of Medicine, University of Vermont, Burlington, Vermont, USA
3 Department of Otolaryngology, Stem Cell Program, University of California, Davis, Davis, California, USA
4 REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGCT), Can Ruti Campus, and Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
5 Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
6 Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
7 Department of Medical and Surgical Sciences of Children and Adults, University Hospital of Modena, Modena, Italy
8 Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIB bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
9 Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
10 REMASUR/BASG, Basque Foundation for Science, Bilbao, Spain
11 La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
12 School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
13 Department of Vascular Surgery, University Medical Center Utrecht and Netherlands Heart Institute, Utrecht, the Netherlands
14 Center for Cellular Immunotherapies at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
15 Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash University and The Ritchie Centre, Melbourne, Australia
16 Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
17 Department of Pediatrics, Harvard Medical School and Boston Children’s Hospital, Boston, Massachusetts, USA
18 ICRC Research Program, Health Science Research Institute Germans Trias i Pujol (IGCT), Can Ruti Campus, and Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
19 Department of Women’s and Children’s Health, University of Padua, Padua, Italy
20 Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry and Visceral Observation Center, Amsterdam AMC, Location AMC, University of Amsterdam, Amsterdam, the Netherlands
21 Brothertheptics, National Institute for Biological Standards and Control (NIBSC), Medicines and Healthcare Products Regulatory Agency, Hertfordshire, UK
22 School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
23 Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
24 Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
25 Federal Office for Safety in Health Care (BASG) and Austrian Agency for Health and Food Safety (AGES), Institute Surveillance, Vienna, Austria
26 Department of Transfusion Medicine, University Hospital, Salzburger Landeskliniken GesmbH (SALK), Salzburg, Austria
27 CMP Unit, Spinal Cord Injury & Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
28 Section Tissue Engineering and Cell Therapeutics, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
29 Institut Curie/INSERM U932/PSL Research University, Paris, France
30 Faculty of Dentistry, National University of Singapore, Singapore
31 Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
32 Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
33 Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore

* Correspondence: Bernd Giebel, PhD, Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany.

https://doi.org/10.1016/j.jcyt.2020.05.002
1465-3249/© 2020 International Society for Cell and Gene Therapy. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
First described in December 2019, the severe acute respiratory syndrome associated with coronavirus disease-19 (COVID-19) quickly evolved into a pandemic, with severe and increasing worldwide morbidity and mortality. Although most infected patients have mild to moderate symptoms or are even asymptomatic, older patients and those with pre-existing chronic diseases are at greater risk of developing serious complications, such as pneumonia or multiple organ failure. COVID-19 respiratory infection is marked by dysregulated immune responses leading to significant respiratory pathology as well as increased probabilities for multi-organ pathologies. While the inflammatory pathways are still being elucidated, notable components include increased circulating levels of pro-inflammatory cytokines and other mediators, including interleukin-6 (IL-6), interleukin-1β (IL-1β), induced protein 10 (IP10) and monocyte chemoattractant protein-1 (MCP-1) [4, 6, 41]. There are also significant alterations in circulating inflammatory cell populations, with initial lymphocytosis followed by severe lymphopenia, with increased ratios of helper to regulatory T cells [4, 6, 30]. Since dysregulated immune responses and the cytokine storm are triggers for development of acute respiratory distress syndrome, an increasing effort and current clinical trials are focused on immune therapeutic approaches, such as IL-1 blockade (anakinra), IL-6 receptor blockade (tocilizumab) and Janus kinase inhibition [22]. In parallel, there are a rapidly increasing number of cell-based therapy investigations, mostly utilizing mesenchymal stromal cells (MSCs) [12]. These are based on supporting pre-clinical data for use of MSCs delivered either systemically or intratracheally in pre-clinical models of acute lung injuries and on demonstration of safety of systemic MSC administration in recent trials for acute respiratory distress syndrome resulting from other etiologies [15, 21].

Among the cell-based therapy investigations for COVID-19, some registered clinical trials aim to utilize extracellular vesicles (EVs) prepared from MSC-conditioned media rather than the cells themselves. MSC-EVs will be administered intravenously (ChiCTR2000030484) or by inhalation (NCT04276987, ChiCTR2000030261). The rationale for these approaches is based on a relatively small but growing number of investigations in pre-clinical lung injury and sepsis models in which MSC-EV preparations were described as being as safe and effective as—if not more than—their parent cells [19, 40]. The approach is further supported by a growing body of literature on the therapeutic potential and mechanisms of EVs in parent cells [19, 40]. The approach is further supported by a growing body of literature on the therapeutic potential and mechanisms of EVs in parent cells [19, 40]. However, the specific scientific rationale for the administration of MSC-EV and other EV treatments in COVID-19 patients needs to be better understood and justified. For example, MSC-EVs do not necessarily suppress immune responses, but rather modulate them. Specifically, they seem to moderate acute immune responses toward regulatory responses, with the latter inducing tolerance and restoring homeostasis [43–45]. While tolerance induction in graft-versus-host disease and other non-infectious diseases may be beneficial, it might also have severe adverse effects in the presence of replicating pathogens. Although influenza and E. coli infections were attenuated in selected models [9, 11, 23], other viruses and bacteria might conceivably expand in an uncontrolled manner in induced tolerogenic environments.

A number of additional issues should be considered before administering MSC-EVs to COVID-19 patients. These include the source of MSC-EVs. MSCs are a heterogeneous cell entity that can be obtained from different tissues. Even if derived from the same tissues, they may display interindividual and possibly clone-specific functional differences [28, 29, 31, 36]. Indeed, side-by-side comparison of four MSC-EV preparations harvested from the conditioned media of different donor-derived bone marrow MSCs demonstrated significant variations in cytokine content [14]. Whether this correlates with therapeutic potency is not yet clear; however, in the example of the ischemic stroke model, it was demonstrated that MSC-EV preparations with comparable particle and protein contents can significantly differ in potency. While some preparations effectively suppressed stroke symptoms, others failed to exert therapeutic activities [37]. Furthermore, in an acute lung injury model, EVs from young, but not aged, MSCs alleviated lipopolysaccharide-induced acute lung injury [10].

Potentially, heterogeneity of EV potency due to different sources, preparations, aging and other factors could be resolved by generating immortalized clonal MSC lines that could be rigorously tested for EV production and potency [5]. Still, apart from their immunomodulatory capabilities, MSC-EVs apparently also control additional biological processes, some with approved therapeutic functions [1] and

© 2020 International Society for Cell and Gene Therapy. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
others that might trigger unforeseen side effects. Just recently, it was found that adipose-derived MSC-EVs had higher thrombogenic activity than bone marrow-derived MSC-EVs [3, 34]. Thus, the source of parental cells might increase thrombosis risk. Coupled with the finding that activation of complement pathways and an associated procoagulant state seem to result in catastrophic microvascular injury syndrome in a proportion of severe COVID-19 cases [18], MSC-EV administration could even be counterproductive in COVID-19.

To this end, it is imperative that stringent “identity” and “potency” parameters are defined and potential side effects addressed before MSC-EV or other EV preparations are released for therapeutic applications [16, 32, 39]. To date, many groups use in-house MSC-EV manufacturing and characterization strategies, mainly for pre-clinical studies [2]. Protocols fulfilling Good Manufacturing Practice (GMP) criteria are scarce, and just a few have been published [8, 26, 33]. For product candidates, studies focusing on safety and clinical pharmacology need to be performed. Results of such studies are mandatory to provide guidance for adjustment of manufacturing, storage, dosing and administration of EV-based therapeutics in specific target diseases.

We would like to refer to a recent statement by ISCT on the use of MSCs in COVID-19 [13] and one by the Italian STEMnet1, as many of the same considerations apply to MSC-EVs or other EVs. Governmental organizations, health care providers and clinical investigators must take the lead by insisting that clinical uses of EVs follow appropriate scientific, regulatory and ethical guidelines and are approved only after a rigorous review by duly empowered agencies. The ethical guidelines produced by the World Health Organization are a useful baseline2. The urgency of the current outbreak does not justify administration of EVs in uncontrolled compassionate use settings and does not obviate the need to register clinical trials, obtain informed consent from patients or prioritize and otherwise comply with good clinical practice. In particular, even limited compassionate use should employ well-characterized MSC-EV preparations produced through strict GMP conditions under the oversight of the relevant national regulatory entity. Additional outbreak-specific measures may be needed, including establishing simplified clinical protocols for hospitalized patients, such as the World Health Organization COVID-19 core protocol; minimizing risks to trial integrity3; and changing logistics of trial participant visits (e.g., implementation of remote assessments) as well as protocol changes for the sake of hazard minimization, which may need to be implemented and reported, in Europe, to the Institute for Research in Biomedicine Barcelona after the fact. Certainly, to foster developments, it is helpful to have regulatory flexibility and support from sources such as the US Food and Drug Administration special emergency program for possible therapies, the Coronavirus Treatment Acceleration Program4, the European Medicines Agency (EMA) COVID-19 Pandemic Task Force5, the EMA guidance for medicine developers and companies on COVID-196 and the guidelines for clinical trials published by an EMA-coordinated group7, respectively. Most or all of the considerations covered for cell-based therapies are also applicable to EV investigations.

In conclusion, to mitigate the risk of potentially life-threatening side effects, ISCT and ISEV strongly urge that the potential benefits and risks in the use of MSC-EVs for COVID-19 be weighed carefully against available pre-clinical data in relevant animal models and clinical data from relevant MSC clinical trials and that any use of EVs be carefully evaluated through rational clinical trial design, employing well-characterized EV preparations produced under strict GMP conditions and under the proper regulatory oversight.

Funding
No funding was received.

Declaration of competing interest
JDA is the co-founder of an exosome therapeutics company called Somos Therapeutics, Inc. BG is a scientific advisory board member with Evox Therapeutics and Innovox Therapeutics SL. MG has a consulting and advisory role with MDimune. BLL has stock and other ownership interests with Tmunity Therapeutics; has received honoraria from Novartis, Terumo and AstraZeneca; and has a consulting or advisory role with Brammer Bio/ThermoFisher Viral Vector Services, Avectas, Immuneel, Ori Biotech and Vycellix. SKL is the founder of Paracrine Therapeutics and has a scientific advisory role with Iljas Biologics and ExoCo. SAM is the inventor of intellectual property licensed by BCH to United Therapeutics Corp.

Author contributions
Drafting the manuscript: VB, DJW, KWW, SKL, BG. All authors have approved the final article.

References


V. Börger et al. / Cytot/herapy 22 (2020) 482–485


