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Coronavirus disease 2019 (SARS-CoV2) is an active global health threat for which treatments are desperately
being sought. Even though most people infected experience mild to moderate respiratory symptoms and
recover with supportive care, certain vulnerable hosts develop severe clinical deterioration. While several
drugs are currently being investigated in clinical trials, there are currently no approved treatments or vac-
cines for COVID-19 and hence there is an unmet need to explore additional therapeutic options. At least three
inflammatory disorders or syndromes associated with immune dysfunction have been described in the con-
text of cellular therapy. Specifically, Cytokine Release Syndrome (CRS), Immune Reconstitution Inflammatory
Syndrome (IRIS), and Secondary Hemophagocytic Lymphohistiocytosis (sHLH) all have clinical and laboratory
characteristics in common with COVID19 and associated therapies that could be worth testing in the context
of clinical trials. Here we discuss these diseases, their management, and potential applications of these treat-
ment in the context of COVID-19. We also discuss current cellular therapies that are being evaluated for the
treatment of COVID-19 and/or its associated symptoms.
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Coronavirus disease 2019 (COVID-19) is an infectious illness caused
by a novel betacoronavirus strain first recognized in December 2019.
The etiological agent of COVID-19, SARS-CoV2, is structurally related
to viruses responsible for severe acute respiratory syndrome (SARS-
CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV).
These coronavirus strains have been responsible for epidemics and
high fatality rates in the past two decades. COVID-19 is an active
global health threat with conflicting fatality rate reports, but it is
known to be higher in hosts with preexisting medical conditions and/
or advanced age [1].

At the time of this writing, COVID-19 pandemic continues
unabated in many parts of the globe. Although most people infected
with SARS-CoV2 experience mild to moderate respiratory symptoms
and recover with supportive care, certain hosts (even including youn-
ger, previously healthy ones) are more likely to develop a precipitous
clinical decline. Current data support that hyperimmune host reac-
tions triggered by the virus are at least partially responsible for these
poor outcomes [2]. Early identification and intervention in these
high-risk patients may provide a means to disease amelioration and
potentially expedited recovery, although to date no pharmacological
therapy has been identified.

A full-bodied worldwide research effort is currently underway to
repurpose existing drugs and develop new therapies able to halt pro-
gressive disease that leads to respiratory failure and death. Here, we
explore how we can apply our extensive knowledge of immune mod-
ulation that has been gained from the cellular therapy field to over-
come the therapeutic challenges of treating COVID-19. Biological
therapies to dampen hyperimmune host responses could potentially
be implemented along with supportive care (supplementary oxygen
and mechanical ventilatory support when indicated) or in combina-
tion with other pharmacotherapies such as antimalarials, antivirals,
anti-COVID-19 antibody infusions (convalescent serum), anticoagula-
tion and immunization.
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Table 2
HLH diagnostic criteria.

HLH
Fever >38.5
Splenomegaly
Cytopenia in at least 2 lineages (Hb <9 g/dL, platelets <100 000/mm3, ANC
<1000/mm3)

Hypertriglyceridemia (>265mg/dL) and/or hypofibrinogenemia (<150 mg/dL)
Hemophagocytosis in bone marrow, spleen, lymph node or liver
Low or absent NK activity
Ferritin >500 ng/mL
Elevated soluble CD25 (soluble IL-2 receptor alpha) 2SD above age-adjusted
lab specific norms (>2400 IU/mL)

The eight diagnostic criteria according to HLH-2004 trial: at least five of eight crite-
ria must be present to make the diagnosis of HLH
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COVID-19 pathophysiology

SARS-CoV2 is a betacoronavirus closely related to SARS-CoV.
Both viruses use the angiotensin-converting enzyme�related car-
boxypeptidase (ACE2) receptor to gain entry to cells. This receptor
is widely expressed in cardiopulmonary tissues and also in some
hematopoietic cells, including monocytes and macrophages [3].
Direct diffuse alveolar damage due to viral targeting of the human
respiratory tract epithelium via ACE2 receptors may lead to a
hyperimmune response in the host, which can result in the devel-
opment of acute respiratory failure and ultimately, in some cases,
death. Decade-long structural studies on SARS-CoV postulate that
viral receptor recognition is one of the most important determi-
nants of its cross-species and human-to-human transmissions,
strongly suggesting that SARS-CoV2 uses ACE2 as its receptor [4].
Recently, a cohort of 21 patients with confirmed COVID-19 infec-
tion and severe disease showed markedly elevated blood levels of
cytokines and chemokines that may predict disease severity [5].
This virus-induced exaggerated host immune response is a previ-
ously described phenomenon thought to be responsible for the
high fatality rate observed in healthy young adults during the
1918 influenza pandemic and also described with SARS and MERS
infections [6].

Early clinical reports of malaise, high fever, chills, anosmia, dys-
geusia and hypoxia combined with biochemical markers associated
with inflammation and hypercoagulable state seem to be prevalent.
Laboratory anomalies such as lymphopenia, high ferritin, elevated
lactate dehydrogenase, interleukin (IL)-6, high C-reactive protein and
soluble CD25 suggest that SARS-CoV-2 infection may trigger cytokine
storm syndrome. This hyper-reactive cytokine release may represent
one of the most important negative prognostic factors in patients
infected with COVID-19. Interestingly, these responses resemble
inflammatory conditions not infrequently seen after hematopoietic
stem cell transplant (HCT) and cellular therapies: cytokine release
syndrome (CRS), immune reconstitution inflammatory syndrome
(IRIS), and secondary hemophagocytic lymphohistiocytosis (sHLH).

Inflammatory conditions associated with cellular therapies

Three prominent immune dysregulation syndromes that may
arise after cellular therapy and stem cell transplantation include CRS,
sHLH and IRIS. All three have clinical and laboratory characteristics in
common and with patterns described in patients with severe COVID-
19 (Table 1). These immune responses may be fatal if not recognized
and treated promptly.

CRS is a potentially life-threatening, non�antigen-specific toxicity
that has been described following use of bispecific antibodies such as
blinatumomab, chimeric antigen receptor (CAR)-T cell therapy and
other immune therapies including but not limited to anti-thymocyte
globulin (ATG) rituximab, alemtuzumab and nivolumab. CRS is one of
the two most common treatment-related adverse events observed
after CAR-T cell therapy; as such, identification, grading and treat-
ment of this complication has been well described in recent years
[7,8]. To harmonize the definitions and grading systems for CRS and
neurotoxicity, consensus recommendations were recently imple-
mented by the American Society for Transplantation and Cellular
Table 1
Comparison of clinical features of COVID-19 and other hyperimmune respo

Fever Hypoxia Hypotension Cytokine storm

CRS + + + +
IRIS + + +/� +
sHLH + +/� +/� +
COVID-19 + + +/� +
Therapy [9] (Table 3). The clinical manifestations of CRS have variable
timing and can range from mild to life-threatening. The onset of CRS
may be within hours after therapeutic antibody therapy and resolve
within days. In contrast, the typical course of CRS after CAR-T infu-
sion, is 1 to 14 days (median, 2�3 days), and resolution is expected
within a few days to weeks. CRS manifests with fever, tachycardia,
hypotension, respiratory distress or hypoxemia and is associated
with elevated circulating levels of several cytokines including IL-6
and interferon-g [9]. In general, the degree of cytokine activation cor-
relates with the severity of the clinical picture. Other laboratory find-
ings are variable and reflect systemic inflammation. sHLH/
macrophage activation syndrome (MAS) is a syndrome of excessive
inflammation and tissue destruction with overlapping features of
CRS. In adults, sHLH is most commonly triggered by viral infections.
sHLH is characterized by T-cell-mediated inflammation, fulminant
cytokine storm, ferritin elevation and multi-organ failure. The HLH
diagnostic criteria is based on the HLH Study Group of the Histiocyte
Society 2004 description of the combination of five of the following
eight characteristics (Table 2): fever, splenomegaly, cytopenias,
hypertriglyceridemia, hypofibrinogenemia, high ferritin, hemopha-
gocytosis, low/absent NK-cell activity and high soluble IL-2 receptor.
CRS and sHLH/MAS have many features in common, as each reflects
the activation of the reticuloendothelial system initiated by T-cell-
mediated inflammation. In the CAR-T literature, most patients
with moderate to severe CRS meet criteria for HLH/MAS with or
without organomegaly, lymphadenopathy or evident hemophago-
cytosis. Patients may meet some of the criteria for HLH/MAS after
CAR-T-cell infusion, but this may also reflect CRS [9]. Importantly,
the clinical and cytokine profile suggestive of HLH/MAS resolve
with CRS resolution; therefore, primary amelioration of CRS with
targeted cytokine biologics may be sufficient without using spe-
cific HLH pharmacotherapies [10]. A retrospective study of
COVID-19 patients found that elevated serum ferritin and IL-6
correlated with increased mortality [2].

IRIS is another hyperinflammatory syndrome with pathogenesis
dependent on CD4+ T cells, proinflammatory cytokines, macrophages
and other innate immune cells. IRIS is a phenomenon described in
human immunodeficiency virus (HIV) patients with severe lympho-
penia and underlying opportunistic infections, occurring during
immune recovery upon initiation of antiretrovirals and presenting as
nse syndromes.

Cytopenias Ferritin Hypofibrinogenemia Organomegaly

+/� +/� +/� +/�
- +/� +/� +/�
+ " + +
+ " + Unknown/+
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worsened clinical manifestations of a preexisting infection or
unmasking of a clinically silent infection [11].

Another condition in which antimicrobial treatment may trigger
IRIS is Whipple’s disease, a chronic infection due to Tropheryma whip-
plei that develops in immunologically susceptible individuals [12].
Here, the initial reduction in CD4+ cell counts and their reconstitution
on treatment is more pronounced in those patients who developed
IRIS than in those without IRIS [13]. Moreover, an imbalance between
activated CD4+ T cells and regulatory T cells seem to play a crucial
role in triggering the cytokine storm. Notably, T. whipplei�specific T-
helper 1 reactivity remained suppressed before and after emergence
of IRIS, thus indicating that flare-up of pathogen-specific immunore-
activity is not instrumental in the pathogenesis of IRIS. This implies
that independent of the causal infectious agent, IRIS may possibly
emerge in those carrying a specific immunological status and that the
therapeutic approach may be the same. Therefore, efforts should be
undertaken to identify the predisposing dysfunctional immune con-
dition.

Multiple pathogens cause IRIS, which can manifest systemically or
localize to the lung. The mechanisms involved in its immunopatho-
genesis are complex and not entirely understood [14]. The harmful
effect of immune response to viral triggers on immunosuppressed
patients who experience IRIS with immune recovery (followed by
worsening various infections) has also been well described in the
allogeneic HCT literature [15]. Respiratory viruses have been sug-
gested to play a role in the pathogenesis of alloimmune-mediated
lung syndromes [16]. It remains to be ascertained whether treatment
of COVID-19 in susceptible immunocompromised hosts may trigger
IRIS.

The immune dysregulation seen in CRS and sHLH/MAS has
recently been described in some patients with severe COVID-19 and
overlaps with IRIS (Figure 1 and Table 1); therefore, applying lessons
learned from the cell therapy literature may provide important
insights into severity classification and prognostic clues [17].
Biologic therapies and immunotherapy used to dampen
hyperimmune responses

IL-6 inhibitors

Tocilizumab (ActemraTM) is a recombinant humanized monoclo-
nal antibody directed against the IL�6 receptor. Endogenous IL-6 is
induced by inflammatory stimuli and mediates a variety of
Figure 1. Overlapping cytokine profiles described in patients with COVID-19, CRS, sHLH and
ventions. CCL = chemokine ligand, COVID-19 = coronavirus disease 2019, CRP = C-reactive pr
growth factor, G-CSF = granulocyte colony-stimulating factor, GMCSF = Granulocyte-macrop
tein, IRIS = Immune Reconstitution Inflammatory Syndrome, MCP = monocyte chemoattract
factor, sHLH = Secondary hemophagocytic lymphohistiocytosis, TNF- a = tumor necrosis
(COVID-19); Brudno. Blood 2019 (CAR-T); Gopal. Eur Resp Review 2017 (IRIS); Schulert. Best
immunological responses. Inhibition of IL-6 receptors by tocilizumab
leads to a reduction in cytokine and acute phase reactant production.

IL-6 is a pleotropic cytokine with both anti- and pro-inflammatory
effects. It is mainly produced by T cells and macrophages upon a tis-
sue injury but also from skeletal muscle, smooth muscle in blood ves-
sels, adipocytes and, notably, by lung epithelial cells [18]. It could be
hypothesized that myalgias, microthrombi formation and higher
complications in obese patients could be associated to IL-6 effects.
Moreover, IL-6 crosses the blood�brain barrier and triggers the
increase of body temperature through the release of prostaglandin E2
(PGE2).

Tocilizumab is indicated for adult patients with autoimmune dis-
orders such as rheumatoid arthritis and was approved by the U.S.
Food and Drug Administration (FDA) in 2017 for severe, life-threaten-
ing, CAR-T-cell�induced CRS in adults and children. The optimal dose
and schedule of tocilizumab for treatment of CAR-T-cell�induced CRS
is not known, but dosing instructions in tocilizumab labeling provide
general recommendations for safe dosing. The FDA-recommended
dose of tocilizumab in CAR-T induced CRS is 8 mg/kg intravenously
(12 mg/k for patients <30 kg body weight) alone or in combination
with corticosteroids.

In a study of 40 hospitalized symptomatic COVID-19 patients, the
median IL-6 was reported 27.1 pg/mL (range 0�430 pg/mL). The risk
of respiratory failure for patients with IL-6 levels of �80 pg/ml was
92% and thus 22 times higher compared with patients with lower IL-
6 levels. After reaching an IL-6 value of 80 pg/mL, the median time to
mechanical ventilation was 1.5 days (range 0�4 days) [19] (Table 4).
In contrast, some patients with Grade 4 CRS after CART-19 infusion,
may have IL-6 levels greater than 600 pg/mL (120-fold increased
from baseline) [20].

The rapid clinical stabilization frequently seen after systemic toci-
lizumab administration to CRS patients strongly implicates a cytokine
array, including IL-8, IL-20, IL-21, IL-22 and dominated by IL-6, in the
pathophysiology of the syndrome [9]. The median time from the
onset of CRS to the first dose of tocilizumab has been reported to be
4 days (range, 0�18 days) [21]. Temperature often normalizes within
a few hours after tocilizumab administration, whereas the other com-
ponents of CRS take longer to resolve. In previous CAR-T clinical tri-
als, patients were considered responders if CRS resolved within
14 days of the first dose of tocilizumab, if not more than 2 doses of
tocilizumab were needed, and if no drugs other than tocilizumab and
corticosteroids were used for treatment. Approximately 70% of
patients achieve a response under this definition [21]. Tocilizumab
has a half-life 11�14 days; therefore, if given early, it could dampen
IRIS suggest pathophysiological similarities and potential for shared therapeutic inter-
otein, CRS = Cytokine release syndrome, CXCL = CXC chemokine ligand, FGF = fibroblast
hage colony-stimulating factor, IFN-g = interferon g , IL = interleukin, IP = induced pro-
ant protein, MIP = macrophage inflammatory protein, PDGF = Platelet-derived growth
factor a, VEGF = vascular endothelial growth factor. References: Huang. Lancet 2020
Practice Rheum 2014 (sHLH). (Color version of figure is available online).
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hyperimmune responses thought to be related to clinical decline in
COVID-19 patients who progress to respiratory failure.

Given the similarities between CRS and COVID-19 hypercytokine-
mia and clinical symptoms, the clinical benefits and safety of tocilizu-
mab is currently being systematically studied.

The efficacy of IL-6�IL-6R antagonists for the treatment of CRS as
well as sHLH underscores the central role of IL-6 signaling in the
pathophysiology of cytokine-driven hyperinflammatory syndromes
[22]. Severe COVID-19 cases may benefit from IL-6 pathway inhibi-
tion given the associated CRS- and sHLH-like serum cytokine eleva-
tions [3].

Currently, tocilizumab is being investigated in an FDA-approved
randomized, double-blind, placebo-controlled phase III clinical trial
to evaluate its safety and efficacy when used with standard of care in
hospitalized adult patients with severe COVID-19 and in a phase II
study in Italy approved by the Italian Agency of Pharmaceutics.

Siltuximab (SylvantTM) is a human murine chimeric monoclonal
antibody that binds IL-6 directly, in contrast to tocilizumab that binds
to the IL-6 receptor. Siltuximab has a higher affinity for IL-6 than toci-
lizumab has for the IL-6R making it an attractive consideration in
managing CRS. There is some concern that circulating IL-6 levels
increase after administration of tocilizumab, contributing to an
increased incidence of neurotoxicity [20,23]. This does not seem to
be a concern with siltuximab, which is the rationale for its proposed
benefit in tocilizumab-refractory cases, although no data are cur-
rently available on its efficacy. Siltuximab has not been sufficiently
studied as a treatment for CRS and its use remains investigational;
therefore, it should be considered only as second line agent in cases
of COVID-19.

IL-1 inhibitor

Data from a phase 3 randomized controlled trial of anakinra (Kin-
eretTM) in sepsis, showed significant increase in survival in patients
with hyperinflammation, without increased adverse events [24]. Cur-
rently, Swedish Orphan Biovitrum has an open-label, multicenter
clinical trial evaluating the use of anakinra in combination with ema-
palumab at reducing hyperinflammation in severe COVID-19
patients. Patients in the anakinra arm, will receive anakinra intrave-
nous (IV) infusion four times daily for 15 days (400 mg/day, divided
in four daily doses).

It is important to note that IL-1 can be detected in the sera of
mouse models of cytokine storm; however, correlation with the
serum levels of IL-1 and disease severity has not been described
for COVID-19 patients. The sensitivity and sensibility of currently
available ELISA kits for human IL-1 are being validated. Gene
expression and single-cell RNAseq data suggest that a signature
related to NF-kB pathway and possibly inflammasome activation
might be present [25].

JAK-STAT inhibitors

Targeting inflammatory cytokine signaling via Janus kinase/signal
transducers and activators of transcription (JAK-STAT) inhibition to
treat CRS is being reported [26]. Baricitinib, fedratinib and ruxolitinib
are potent and selective JAK inhibitors approved for indications such
as rheumatoid arthritis and myelofibrosis. All three are powerful
anti-inflammatories that, as JAK-STAT signaling inhibitors, are likely
to be effective against the consequences of the elevated levels of
cytokines (including interferon-g) typically observed in people with
COVID-19 [5].

BTK-inhibitors

Clinical trials examining the potential benefit for Bruton’s tyrosine
kinase (BTK) inhibitors such as ibrutinib (ImbruvicaTM) to protect
against lung pathology in patients with COVID-19 are being initiated.
The clinical course of six patients who were receiving the drug for
Waldenstrom’s macroglobulinemia and became ill with COVID-19
was recently reported. The authors proposed that BTK-inhibition
may provide protection against lung injury and even improve pulmo-
nary function in hypoxic patients with COVID-19 [27].

Convalescent Plasma

Immunotherapy with neutralizing antibodies present in conva-
lescent plasma proved to be safe and during the SARS, MERS and
2009 H1N1 influenza epidemics [28,29]. The feasibility of conva-
lescent plasma transfusion to rescue severely ill patients with COVID-
19 was explored in 10 patients in Wuhan, China. One dose (200 mL)
of convalescent plasma was well tolerated, seemed to significantly
improve clinical symptoms within 3 days and resulted in high-level
neutralizing antibodies, leading to disappearance of viremia in
7 days. These results should be validated in larger cohorts, preferably
with randomized trials [30].

Vaccination

Currently, there are no approved immunizations for COVID-19. A
National Institutes of Health�sponsored phase 1 study is currently
evaluating the experimental vaccine mRNA-1273 (Moderna, Inc.,
Cambridge, Ma, USA) in healthy subjects aged 18 to 55 years. This is a
novel lipid nanoparticle-encapsulated mRNA vaccine that encodes
for a prefusion stabilized form of the spike (S) protein of SARS-CoV-2.
The primary objective of the study is to evaluate the safety and
reactogenicity of a 2-dose vaccination schedule of mRNA-1273,
given 28 days apart, across three dosages (three different doses
being tested, each given twice. E.g. (hypothetically) 50 mg on day
0, 50 mg on day 5; 100 mg on day 0, 100 mg on day 5; 500 mg
on day 0, 500 mg on day 5) (https://www.clinicaltrials.gov/ct2/
show/NCT04283461). Multiple other vaccination studies are cur-
rently under development.

Immunomodulation

MSCs
MSCs have immunomodulatory properties that make them

potential therapeutic tools to repair tissue damage and dampen
inflammation in immune-mediated disorders. Indeed, their action
is displayed not only in all immune cells, but also in cell popula-
tions, such as epithelial cells, endothelial cells, fibroblasts, which
take part in inflammatory cascades and are not targeted by other
therapies. Moreover, MSCs are an attractive therapeutic option
because they elicit no (or a weak) allogeneic immune responses
when delivered to a non-identical, non-matched recipient and
because they can easily be extracted from a variety of tissues
including bone marrow, adipose and placental tissues including
umbilical cord blood, and expanded in vitro as well as due to
their high safety profile independent to the tissue source and
clinical setting [31]. Although they show great promise in the
treatment of many immune and inflammatory disorders, the large
variability in manufactured cell products, donor cell quality, dos-
ages, formulation as fresh or cryopreserved and differing adminis-
tration routes have obscured their potential therapeutic benefit.
To overcome these hurdles, a careful evaluation of appropriate
cell sources, more scientific data and a better mechanistic under-
standing of immunosuppression of MSCs is needed [32]. The
START clinical phase II study has the highest number of MSC-
treated patients suffering from (non-COVID) acute respiratory dis-
tress syndrome (ARDS; n = 40), that is, it showed that a single
dose of allogeneic bone marrow�derived MSCs did not cause
short- or long-term hemodynamic or respiratory adverse events

https://www.clinicaltrials.gov/ct2/show/NCT04283461
https://www.clinicaltrials.gov/ct2/show/NCT04283461
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over a 60-day follow-up period. However, no significant improve-
ment in the mortality rate related to ARDS was observed. This
may be due to differences in the disease severity within the study
populations as well as low MSC viability, ranging from only 35 to
80% [33].

During the SARS-CoV-2 outbreak in China, several clinical
studies were open and are still ongoing, with one already pub-
lished: a single-center open-label pilot investigation from the
YouAn Hospital in Beijing administered BM-derived MSCs to
seven patients with COVID-19 pneumonia with differing degrees
of severity including one patient with critically severe disease
requiring ICU care [27]. The MSCs were given as a single intrave-
nous administration at a dose of 106 cells/kg body weight in
100 mL of saline at various times after initial symptomatic pre-
sentation. The seven patients were categorized as critically severe
(n = 1), severe (n = 4) and common type (n = 2). Three additional
patients classified as severe received placebo for comparison.
Patients were followed for 14 days after MSC or placebo adminis-
tration and a range of safety and efficacy endpoints were
assessed. No infusion toxicities or severe attributable adverse
events were observed and patients, including the one categorized
as critically severe, apparently demonstrated clinical improve-
ments within 2 to 4 days after MSC administration However,
although detailed clinical information as well as information on
levels of circulating inflammatory mediators and of inflammatory
cell populations were presented, there is a lack of corresponding
information for the other six patients or for the three placebo
patients. As such, more information regarding inclusion and
exclusion criteria, timing of MSC administration relative to dis-
ease onset, comorbidities, the clinical course of each patient and
a comprehensive evaluation of inflammatory mediators for both
treated and placebo patients are required to better determine the
potential efficacy of MSC and their mechanisms of action in this
setting [35].

In parallel with studies evaluating the potency of MSC for the
treatment COVID-19 in China, there are now several centers globally
both in the academic and industry-sponsored settings evaluating
MSC for this disease. Results from these studies should be forthcom-
ing soon.

Virus-specific T cells
Virus-specific T cells (VSTs) have been successfully generated

against several viruses including cytomegalovirus (CMV), Epstein-
Barr virus, adenovirus,[51�55] human herpes virus (HHV)-6, BK
polyomavirus (BK), [56] parainfluenza virus, [65] Zika virus, [57]
mycobacteria, [58] norovirus, [59] herpes simplex virus (HSV-1),
[60] HIV [61] and others. Of these, T cells targeting CMV, Epstein-
Barr virus, adenovirus, HHV6, BK virus, parainfluenza and HIV
[62] have been tested in patients, with a strong safety profile and
many demonstrating promising clinical responses worthy of fur-
ther clinical evaluation [63]. To broaden access to these cell ther-
apies, several investigators and companies have extended this
technology to off-the-shelf allogeneic T cells, where the patient
and product are partially human leukocyte antigen (HLA)
matched. This could present an appealing opportunity for SARS-
CoV2-specific T cells. A bank of SARS-CoV2�specific T cells could
be created from a diverse range of donors covering diverse HLA
alleles, and a personalized product would be selected for each
patient based on the degree of HLA match [64]. This would allow
for rapid shipment and treatment of patients, albeit in hospitals
with existing cell therapy expertise and resources.

Natural killer cells
Natural killer (NK) cells are lymphocytes that recognize targets

via the absence of ligands such as HLA and a complex array of
activating and inhibitory receptors. Unlike T cells, NK cells do not
rely on peptides presented in the presence of HLA, which makes
NK cells an ideal cell therapy for allogeneic, off-the-shelf use. A
role for NK cells in the prevention of relapse after HCT has been
postulated previously, and recently, CAR NK cells have shown
promise in a study of patients with CD19-positive non�Hodgkin’s
lymphoma or chronic lymphocytic leukemia. Recently, the FDA
granted investigators from the biotechnology company Celularity
clearance to test whether cryopreserved, allogeneic NK cells
derived from placental hematopoietic stem cells are capable of
lysing virus-infected cells and control the resulting immune
response. However, aside from clinical data of the NK cell product
CYNK-001, there is limited public information about the efficacy
of CYNK-001 or other NK cells against COVID-19 [36�38].

Extravascular vesicles

Extravascular vesicles (EVs) are a heterogeneous group of cell-
derived membranous structures, including exosomes and microve-
sicles, which are involved in intercellular communication, thus
important for multiple physiological and pathological processes [39].
The broad and increasing interest in EVs has opened the opportunity
to use exosomes and microvesicles both as biomarkers to follow the
progression of various pathological states, as well as potential thera-
peutic modalities. In particular, MSC-derived EVs have been shown
in a range of preclinical studies, including those of acute lung injury,
to be as effective as the parent cells themselves [40]. However, there
are several issues including but not limited to source, isolation and
purification approaches, manufacturing consistency and potency that
are in evolution and yet no clinical investigations in patients with
ARDS [41]. As such, it is likely premature to consider use of EVs for
COVID-19 respiratory disease.

Corticosteroids

Evidence in patients with SARS and MERS suggests that adminis-
tration of corticosteroids did not influence mortality but rather
delayed viral clearance [42]. Moreover, current interim guidance
from the World Health Organization on clinical management of
severe acute respiratory infection when novel coronavirus infection
is suspected advises against the use of corticosteroids unless indi-
cated for another reason [43]. However, in hyperinflammatory states,
immunosuppression is likely to be beneficial (Mehta. Lancet 2020)
and may be worth trying for critically ill COVID-19 patients. Further
well-designed clinical trials are urgently needed to evaluate the
safety and efficacy of steroid therapy in COVID-19.

Drugs with antiviral activity

The combination of two antiviral molecules (lopinavir, a human
immunodeficiency virus type 1 aspartate protease inhibitor, plus rito-
navir, an inhibitor of the cytochrome P450 to increase its plasma half-
life) has been tried for COVID-19. However, convincing data are lack-
ing as recently demonstrated, the association of lopinavir�ritonavir
has proved unfruitful compared with standard of care in an adult
cohort of hospitalized patients with severe SARS-CoV-2 pneumonia
[44]. Therefore, further antiviral agents have been proposed.

Hydroxychloroquine and chloroquine are drugs that interfere
with digestive vacuole function within sensitive malarial parasites by
increasing the pH and inhibiting lysosomal degradation of hemoglo-
bin; inhibit locomotion of neutrophils and chemotaxis of eosinophils
and; impair complement-dependent antigen-antibody reactions.
Chloroquine has been used for malaria treatment and chemoprophy-
laxis and hydroxychloroquine is used for treatment of several auto-
immune conditions including rheumatoid arthritis. Both drugs have
in vitro activity against coronaviruses, with hydroxychloroquine hav-
ing relatively higher potency against SARS-CoV-2 [45]. On the basis



Table 3
American Society for Transplantation and Cellular Therapy CAR-T-related CRS consensus grading.

CRS parameter Grade 1 Grade 2 Grade 3 Grade 4

Fevera Temperature �38°C Temperature �38°C Temperature �38°C Temperature �38°C
With
Hypotension None Not requiring vasopressors Requiring a vasopressor with or without

vasopressin
Requiring multiple vasopressors (exclud-
ing vasopressin)

And/orb

Hypoxia None Requiring low-flow nasal cannulac or
blow-by

Requiring high-flow nasal cannulac, face-
mask, nonrebreather mask, or venturi
mask

Requiring positive pressure (e.g., CPAP,
BiPAP, intubation and mechanical
ventilation)

BiPAP; bilevel positive airway pressure; CPAP, Continuous positive airway pressure.
a Fever is defined as temperature �38°C not attributable to any other cause. In patients who have CRS then receive antipyretic or anticytokine therapy such as tocilizu-

mab or steroids, fever is no longer required to grade subsequent CRS severity. In this case, CRS grading is driven by hypotension and/or hypoxia.
b CRS grade is determined by the more severe event: hypotension or hypoxia not attributable to any other cause. For example, a patient with temperature of 39.5°C,

hypotension requiring one vasopressor, and hypoxia requiring low-flow nasal cannula is classified as grade 3 CRS.
c Low-flow nasal cannula is defined as oxygen delivered at �6L/min. Low flow also includes blow-by oxygen delivery, sometimes used in pediatrics. High-flow nasal can-

nula is defined as oxygen delivered at >6 L/min.

Table 4
COVID-19 Laboratory Parameters (adapted from Herold et al., 2020) [19].

Laboratory parameters Evaluable Median (range) Mechanical ventilation P value
No (n = 27) Yes (n = 13)

Lymphocyte count (%) 36 19 (4�45) 21 (4�45) 15 (6�26) 0.050
CRP (mg/dl) 40 2.8 (0�31.5) 1.7 (0�31.5) 7.8 (1.6�17.1) 0.0019
Bilirubin (mg/dl) 36 0.5 (0.2�1.9) 0.5 (0.2�1.2) 0.5 (0.4�1.9) 0.93
WBC (G/l) 40 5.295 (2.12�308) 4.75 (2.12�12.5) 6.64 (4.99�308) 0.0014
LDH (U/l) 38 292 (182�1078) 281 (182�619) 346 (252�1078) 0.0026
PCT (mg/ml) 37 0 (0�5) 0 (0�0.6) 0.1 (0�5) 0.011
IL6 (pg/ml) 37 27.1 (0�430) 19.6 (0�76.5) 121 (19.2�430) 0.000012
Platelet count (G/ml) 40 165 (88�440) 186 (88�334) 160 (1�440) 0.59
Troponin T (ng/ml) 34 0 (0�0.032) 0 (0�0.022) 0 (0�0.032) 0.018
Creatinine (mg/dl) 40 0.9 (0.4�2.1) 0.9 (0.4�1.3) 1.0 (0.9�2.1) 0.00034
D�Dimer 30 0.7 (0�2.9) 0.6 (0�2.2) 1.1 (0.6�2.9) 0.028
Ferritin (ng/ml) 27 644 (64�2153) 606 (64�1748) 810 (431�2153) 0.16

CRP, C-reactive protein; LDH = lactate dehydrogenase; PCT = Procalcitonin; WBC, white blood cell count.
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of limited in vitro and anecdotal data, chloroquine or hydroxychloro-
quine administered either with or without azithromycin (a macrolide
with anti-inflammatory properties) have been recommended for
treatment of hospitalized COVID-19 patients in several countries.
However, due to the potential for serious adverse effects, especially
when combined with other drugs, caution is advised until peer-
reviewed data are available.

Remdesivir is an investigational antiviral which blocks viral repli-
cation by inhibiting RNA synthesis [46]. It has broad antiviral activity
that inhibits viral replication through premature termination of RNA
transcription and has in vitro activity against SARS-CoV-2 and in vitro
and in vivo activity against related beta coronaviruses [45]. Currently,
it can be obtained for IV use in hospitalized patients with COVID-19
through an National Institutes of Health�sponsored double-blind
placebo-controlled trial (https://clinicaltrials.gov/ct2/show/
NCT04280705), two phase 3 randomized open-label trials (https://
clinicaltrials.gov/ct2/show/NCT04292899 and https://clinicaltrials.
gov/ct2/show/NCT04292730) or on an uncontrolled compassionate
use basis. In a cohort of patients hospitalized for severe COVID-19
who were treated with compassionate-use remdesivir, clinical
improvement was observed in 36 of 53 patients (68%). Due to study
limitations such as cohort size and single arm design, efficacy will
require ongoing randomized, placebo-controlled trials [47].

Other potentially interesting treatments currently being studied
include the use of emapalumab (anti-interferon-g monoclonal anti-
body Sobi-IMMUNO-101 study) and the antiparasitic ivermectin [48].

To date, more than 600 worldwide studies and clinical trials
investigating COVID-19 are underway. (Appendix 1: COVID-19 Clini-
cal Trials). Rigorous premarketing evaluation of drugs’ safety and
effectiveness in randomized, controlled trials remains the primary
tool for protecting the public from drugs that are ineffective, unsafe
or both [49].

Conclusion

In conclusion, SARS-CoV-2 is a novel betacoronavirus currently
causing a pandemic of unprecedented modern proportions. COVID-
19 ranges from mild viral illness in most hosts to life-threatening dis-
ease in a subset of patients who develop hyperimmune inflammatory
responses. Further studies aimed at unraveling the immune response
in lung and peripheral blood will aid in understanding the risk of
developing ARDS is based on preexisting conditions and not the virus
itself.

In the absence of FDA- and European Medicines Agency-
�approved treatments for COVID-19, management currently
relies on supportive care. Ongoing reports of clinical and labora-
tory features of COVID-19 show significant overlap with hyperin-
flammatory conditions such as CRS, sHLH and IRIS. Early
recognition and treatment of hosts who display the hallmarks of
CRS, sHLH and SIRS is of utmost importance to reduce morbidity
and mortality. A number of therapeutics approved for other indi-
cations as well as investigational agents are currently being eval-
uated in several hundred clinical trials globally. Experiences
derived from therapeutics employed for the treatment of compli-
cations secondary to immunotherapies, such as CAR-T, bispecific
monoclonal antibodies and HCT, may provide a safe framework
for the classification and early intervention of patients who are at
the highest risk of dying from COVID-19�related complications.
Despite the urgency of the pandemic, extreme caution must be
exercised to avoid the use of unproven therapeutics based on

https://clinicaltrials.gov/ct2/show/NCT04280705
https://clinicaltrials.gov/ct2/show/NCT04280705
https://clinicaltrials.gov/ct2/show/NCT04292899
https://clinicaltrials.gov/ct2/show/NCT04292899
https://clinicaltrials.gov/ct2/show/NCT04292730
https://clinicaltrials.gov/ct2/show/NCT04292730
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limited data from poorly conducted clinical trials and/or observa-
tional data [34,50]. Well-designed and appropriately conducted
randomized controlled trials are therefore essential to find a defi-
nite answer.
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