Advertisement
Short Communication| Volume 21, ISSUE 10, P1019-1024, October 2019

Download started.

Ok

Mesenchymal stem versus stromal cells: International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell committee position statement on nomenclature

Published:September 13, 2019DOI:https://doi.org/10.1016/j.jcyt.2019.08.002

      Abstract

      The International Society for Cell & Gene Therapy (ISCT®) Mesenchymal Stromal Cell (ISCT MSC) committee offers a position statement to clarify the nomenclature of mesenchymal stromal cells (MSCs). The ISCT MSC committee continues to support the use of the acronym “MSCs” but recommends this be (i) supplemented by tissue-source origin of the cells, which would highlight tissue-specific properties; (ii) intended as MSCs unless rigorous evidence for stemness exists that can be supported by both in vitro and in vivo data; and (iii) associated with robust matrix of functional assays to demonstrate MSC properties, which are not generically defined but informed by the intended therapeutic mode of actions.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Horwitz E.M.
        • Le Blanc K.
        • Dominici M.
        • Mueller I.
        • Slaper-Cortenbach I.
        • Marini F.C.
        • et al.
        Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement.
        Cytotherapy. 2005; 7: 393-395https://doi.org/10.1080/14653240500319234
        • Sacchetti B.
        • Funari A.
        • Michienzi S.
        • Di Cesare S.
        • Piersanti S.
        • Saggio I.
        • et al.
        Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment.
        Cell. 2007; 131: 324-336https://doi.org/10.1016/j.cell.2007.08.025
        • Chan C.K.F.
        • Gulati G.S.
        • Sinha R.
        • Tompkins J.V.
        • Lopez M.
        • Carter A.C.
        • et al.
        Identification of the human skeletal stem cell.
        Cell. 2018; 175 (e21): 43-56https://doi.org/10.1016/j.cell.2018.07.029
        • Dennis J.E.
        • Caplan A.I.
        Advances in mesenchymal stem cell biology.
        Curr Opin Orthopaedics. 2004; 15 ([Miscellaneous Article]): 341-346
        • Le Blanc K.
        • Mougiakakos D.
        Multipotent mesenchymal stromal cells and the innate immune system.
        Nat Rev Immunol. 2012; 12: 383-396https://doi.org/10.1038/nri3209
        • Kallmeyer K.
        • Pepper M.S.
        Homing properties of mesenchymal stromal cells.
        Expert Opin Biological Ther. 2015; 15: 477-479https://doi.org/10.1517/14712598.2015.997204
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • Slaper-Cortenbach I.
        • Marini F.
        • Krause D.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317https://doi.org/10.1080/14653240600855905
        • Lin C.-S.
        • Ning H.
        • Lin G.
        • Lue T.F.
        Is CD34 truly a negative marker for mesenchymal stromal cells?.
        Cytotherapy. 2012; 14: 1159-1163https://doi.org/10.3109/14653249.2012.729817
        • Bellagamba B.C.
        • Grudzinski P.B.
        • Ely P.B.
        • Nader P.
        • de J.H.
        • Nardi N.B.
        • da Silva Meirelles L.
        Induction of expression of CD271 and CD34 in mesenchymal stromal cells cultured as spheroids.
        Stem Cells Int. 2018; 20187357213https://doi.org/10.1155/2018/7357213
        • Simmons P.J.
        • Torok-Storb B.
        CD34 expression by stromal precursors in normal human adult bone marrow.
        Blood. 1991; 78: 2848-2853
        • Stagg J.
        • Pommey S.
        • Eliopoulos N.
        • Galipeau J.
        Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell.
        Blood. 2006; 107: 2570-2577https://doi.org/10.1182/blood-2005-07-2793
        • Romieu-Mourez R.
        • François M.
        • Boivin M.-N.
        • Stagg J.
        • Galipeau J.
        Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-γ, TGF-β, and cell density.
        J Immunol. 2007; 179: 1549-1558https://doi.org/10.4049/jimmunol.179.3.1549
      1. Jabr F.In the Flesh: The Embedded Dangers of Untested Stem Cell Cosmetics. Scientific American n.d. https://www.scientificamerican.com/article/stem-cell-cosmetics/(accessed February 20, 2019).

        • Caplan A.I.
        Mesenchymal stem cells: time to change the name!.
        Stem Cells Transl Med. 2017; 6: 1445-1451https://doi.org/10.1002/sctm.17-0051
        • Sipp D.
        • Robey P.G.
        • Turner L.
        Clear up this stem-cell mess.
        Nature. 2018; 561: 455https://doi.org/10.1038/d41586-018-06756-9
        • Galipeau J.
        • Weiss D.J.
        • Dominici M.
        Response to Nature commentary “Clear up this stem-cell mess”.
        Cytotherapy. 2019; 21: 1-2https://doi.org/10.1016/j.jcyt.2018.11.007
        • Crisan M.
        • Yap S.
        • Casteilla L.
        • Chen C.-W.
        • Corselli M.
        • Park T.S.
        • et al.
        A perivascular origin for mesenchymal stem cells in multiple human organs.
        Cell Stem Cell. 2008; 3: 301-313https://doi.org/10.1016/j.stem.2008.07.003
        • Brighton C.T.
        • Lorich D.G.
        • Kupcha R.
        • Reilly T.M.
        • Jones A.R.
        • Woodbury R.A.
        The pericyte as a possible osteoblast progenitor cell.
        Clin Orthop Relat Res. 1992; 275: 287-299
        • Canfield A.E.
        • Doherty M.J.
        • Kelly V.
        • Newman B.
        • Farrington C.
        • Grant M.E.
        • et al.
        Matrix Gla protein is differentially expressed during the deposition of a calcified matrix by vascular pericytes.
        FEBS Lett. 2000; 487: 267-271
        • Bianco P.
        • Robey P.G.
        Stem cells in tissue engineering.
        Nature. 2001; 414: 118-121https://doi.org/10.1038/35102181
        • Tavian M.
        • Péault B.
        The changing cellular environments of hematopoiesis in human development in utero.
        Exp Hematol. 2005; 33: 1062-1069https://doi.org/10.1016/j.exphem.2005.06.025
        • Covas D.T.
        • Panepucci R.A.
        • Fontes A.M.
        • Silva J.W.
        • Orellana M.D.
        • Freitas M.C.
        • et al.
        Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts.
        Exp Hematol. 2008; 36: 642-654https://doi.org/10.1016/j.exphem.2007.12.015
        • Blocki A.
        • Wang Y.
        • Koch M.
        • Peh P.
        • Beyer S.
        • Law P.
        • et al.
        Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis.
        Stem Cells Dev. 2013; 22: 2347-2355https://doi.org/10.1089/scd.2012.0415
        • Guimarães-Camboa N.
        • Cattaneo P.
        • Sun Y.
        • Moore-Morris T.
        • Gu Y.
        • Dalton N.D.
        • et al.
        Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo.
        Cell Stem Cell. 2017; 20 (e5): 345-359https://doi.org/10.1016/j.stem.2016.12.006
        • Corselli M.
        • Chen C.-W.
        • Sun B.
        • Yap S.
        • Rubin J.P.
        • Péault B.
        The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells.
        Stem Cells Dev. 2012; 21: 1299-1308https://doi.org/10.1089/scd.2011.0200
        • Melief S.M.
        • Zwaginga J.J.
        • Fibbe W.E.
        • Roelofs H.
        Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts.
        Stem Cells Transl Med. 2013; 2: 455-463https://doi.org/10.5966/sctm.2012-0184
        • Phinney D.G.
        • Sensebé L.
        Mesenchymal stromal cells: misconceptions and evolving concepts.
        Cytotherapy. 2013; 15: 140-145https://doi.org/10.1016/j.jcyt.2012.11.005
        • Sacchetti B.
        • Funari A.
        • Remoli C.
        • Giannicola G.
        • Kogler G.
        • Liedtke S.
        • et al.
        No identical “mesenchymal stem cells” at different times and sites: human committed progenitors of distinct origin and differentiation potential are incorporated as adventitial cells in microvessels.
        Stem Cell Reports. 2016; 6: 897-913https://doi.org/10.1016/j.stemcr.2016.05.011
        • Sarugaser R.
        • Hanoun L.
        • Keating A.
        • Stanford W.L.
        • Davies J.E.
        Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy.
        PLOS ONE. 2009; 4: e6498https://doi.org/10.1371/journal.pone.0006498
        • Gronthos S.
        • Brahim J.
        • Li W.
        • Fisher L.W.
        • Cherman N.
        • Boyde A.
        • et al.
        Stem cell properties of human dental pulp stem cells.
        J Dent Res. 2002; 81: 531-535https://doi.org/10.1177/154405910208100806
        • Zannettino A.C.W.
        • Paton S.
        • Arthur A.
        • Khor F.
        • Itescu S.
        • Gimble J.M.
        • et al.
        Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo.
        J Cell Physiol. 2008; 214: 413-421https://doi.org/10.1002/jcp.21210
        • Russell K.C.
        • Phinney D.G.
        • Lacey M.R.
        • Barrilleaux B.L.
        • Meyertholen K.E.
        • O'Connor K.C.
        In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment.
        Stem Cells. 2010; 28: 788-798https://doi.org/10.1002/stem.312
        • Guilak F.
        • Lott K.E.
        • Awad H.A.
        • Cao Q.
        • Hicok K.C.
        • Fermor B.
        • et al.
        Clonal analysis of the differentiation potential of human adipose-derived adult stem cells.
        J Cell Physiol. 2006; 206: 229-237https://doi.org/10.1002/jcp.20463
        • Muraglia A.
        • Cancedda R.
        • Quarto R.
        Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.
        J Cell Sci. 2000; 113: 1161-1166
        • Lee C.C.I.
        • Christensen J.E.
        • Yoder M.C.
        • Tarantal A.F.
        Clonal analysis and hierarchy of human bone marrow mesenchymal stem and progenitor cells.
        Exp Hematol. 2010; 38: 46-54https://doi.org/10.1016/j.exphem.2009.11.001
        • Friedenstein A.J.
        • Chailakhyan R.K.
        • Gerasimov U.V.
        Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers.
        Cell Tissue Kinet. 1987; 20: 263-272
        • Linard C.
        • Brachet M.
        • L'homme B.
        • Strup-Perrot C.
        • Busson E.
        • Bonneau M.
        • et al.
        Long-term effectiveness of local BM-MSCs for skeletal muscle regeneration: a proof of concept obtained on a pig model of severe radiation burn.
        Stem Cell Res Ther. 2018; 9: 299https://doi.org/10.1186/s13287-018-1051-6
        • Winkler T.
        • von Roth P.
        • Schuman M.R.
        • Sieland K.
        • Stoltenburg-Didinger G.
        • Taupitz M.
        • et al.
        In vivo visualization of locally transplanted mesenchymal stem cells in the severely injured muscle in rats.
        Tissue Eng Part A. 2008; 14: 1149-1160https://doi.org/10.1089/ten.tea.2007.0179
        • Mazurier F.
        • Doedens M.
        • Gan O.I.
        • Dick J.E.
        Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells.
        Nat Med. 2003; 9: 959-963https://doi.org/10.1038/nm886
        • McKenzie J.L.
        • Gan O.I.
        • Doedens M.
        • Dick J.E.
        Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells.
        Blood. 2005; 106: 1259-1261https://doi.org/10.1182/blood-2005-03-1081
        • Kuznetsov S.A.
        • Krebsbach P.H.
        • Satomura K.
        • Kerr J.
        • Riminucci M.
        • Benayahu D.
        • et al.
        Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo.
        J Bone Miner Res. 1997; 12: 1335-1347https://doi.org/10.1359/jbmr.1997.12.9.1335
        • Meirelles Lda S
        • Fontes A.M.
        • Covas D.T.
        • Caplan A.I.
        Mechanisms involved in the therapeutic properties of mesenchymal stem cells.
        Cytokine Growth Factor Rev. 2009; 20: 419-427https://doi.org/10.1016/j.cytogfr.2009.10.002
        • Caplan A.I.
        • Correa D.
        The MSC: an injury drugstore.
        Cell Stem Cell. 2011; 9: 11-15https://doi.org/10.1016/j.stem.2011.06.008
        • Galipeau J.
        • Krampera M.
        • Barrett J.
        • Dazzi F.
        • Deans R.J.
        • DeBruijn J.
        • et al.
        International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials.
        Cytotherapy. 2016; 18: 151-159https://doi.org/10.1016/j.jcyt.2015.11.008
        • Iyer S.S.
        • Rojas M.
        Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies.
        Expert Opin Biol Ther. 2008; 8: 569-581https://doi.org/10.1517/14712598.8.5.569
        • Jones B.J.
        • McTaggart S.J.
        Immunosuppression by mesenchymal stromal cells: from culture to clinic.
        Exp Hematol. 2008; 36: 733-741https://doi.org/10.1016/j.exphem.2008.03.006
        • Krampera M.
        • Galipeau J.
        • Shi Y.
        • Tarte K.
        • Sensebe L.
        • MSC Committee of the International Society for Cellular Therapy (ISCT)
        Immunological characterization of multipotent mesenchymal stromal cells–The International Society for Cellular Therapy (ISCT) working proposal.
        Cytotherapy. 2013; 15: 1054-1061https://doi.org/10.1016/j.jcyt.2013.02.010
        • Kinnaird T.
        • Stabile E.
        • Burnett M.S.
        • Shou M.
        • Lee C.W.
        • Barr S.
        • et al.
        Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms.
        Circulation. 2004; 109: 1543-1549https://doi.org/10.1161/01.CIR.0000124062.31102.57
        • Gruber R.
        • Kandler B.
        • Holzmann P.
        • Vögele-Kadletz M.
        • Losert U.
        • Fischer M.B.
        • et al.
        Bone marrow stromal cells can provide a local environment that favors migration and formation of tubular structures of endothelial cells.
        Tissue Eng. 2005; 11: 896-903https://doi.org/10.1089/ten.2005.11.896
        • Wang C.-Y.
        • Yang H.-B.
        • Hsu H.-S.
        • Chen L.-L.
        • Tsai C.-C.
        • Tsai K.-S.
        • et al.
        Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats.
        J Tissue Eng Regen Med. 2012; 6: 559-569https://doi.org/10.1002/term.461
        • Hoffmann J.
        • Glassford A.J.
        • Doyle T.C.
        • Robbins R.C.
        • Schrepfer S.
        • Pelletier M.P.
        Angiogenic effects despite limited cell survival of bone marrow-derived mesenchymal stem cells under ischemia.
        Thorac Cardiovasc Surg. 2010; 58: 136-142https://doi.org/10.1055/s-0029-1240758
        • Chinnadurai R.
        • Rajan D.
        • Qayed M.
        • Arafat D.
        • Garcia M.
        • Liu Y.
        • et al.
        Potency analysis of mesenchymal stromal cells using a combinatorial assay matrix approach.
        Cell Rep. 2018; 22: 2504-2517https://doi.org/10.1016/j.celrep.2018.02.013
        • Kordelas L.
        • Rebmann V.
        • Ludwig A.-K.
        • Radtke S.
        • Ruesing J.
        • Doeppner T.R.
        • et al.
        MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease.
        Leukemia. 2014; 28: 970-973https://doi.org/10.1038/leu.2014.41
        • Del Fattore A.
        • Luciano R.
        • Pascucci L.
        • Goffredo B.M.
        • Giorda E.
        • Scapaticci M.
        • et al.
        Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes.
        Cell Transplant. 2015; 24: 2615-2627https://doi.org/10.3727/096368915X687543
        • Favaro E.
        • Carpanetto A.
        • Caorsi C.
        • Giovarelli M.
        • Angelini C.
        • Cavallo-Perin P.
        • et al.
        Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients.
        Diabetologia. 2016; 59: 325-333https://doi.org/10.1007/s00125-015-3808-0
      2. Concise Review: MicroRNA Function in Multipotent Mesenchymal Stromal Cells - Clark - 2014 - STEM CELLS - Wiley Online Library n.d. https://stemcellsjournals.onlinelibrary.wiley.com/doi/full/10.1002/stem.1623 (accessed April 1, 2019).

        • Collino F.
        • Deregibus M.C.
        • Bruno S.
        • Sterpone L.
        • Aghemo G.
        • Viltono L.
        • et al.
        Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs.
        PLoS ONE. 2010; 5: e11803https://doi.org/10.1371/journal.pone.0011803
        • Viswanathan S.
        • Keating A.
        • Deans R.
        • Hematti P.
        • Prockop D.
        • Stroncek D.F.
        • et al.
        Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation.
        Stem Cells Dev. 2014; 23: 1157-1167https://doi.org/10.1089/scd.2013.0591
        • Mendicino M.
        • Bailey A.M.
        • Wonnacott K.
        • Puri R.K.
        • Bauer S.R.
        MSC-based product characterization for clinical trials: an FDA perspective.
        Cell Stem Cell. 2014; 14: 141-145https://doi.org/10.1016/j.stem.2014.01.013
        • Martin I.
        • Galipeau J.
        • Kessler C.
        • Blanc K.L.
        • Dazzi F.
        Challenges for mesenchymal stromal cell therapies.
        Science Translational Medicine. 2019; 11 (eaat2189): 1-3https://doi.org/10.1126/scitranslmed.aat2189
      3. Anonymous. Alofisel. European Medicines Agency - Commission 2018. https://www.ema.europa.eu/en/medicines/human/EPAR/alofisel. (accessed February 20, 2019).

        • Panés J.
        • García-Olmo D.
        • Van Assche G.
        • Colombel J.F.
        • Reinisch W.
        • Baumgart D.C.
        • et al.
        Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial.
        Lancet. 2016; 388: 1281-1290https://doi.org/10.1016/S0140-6736(16)31203-X
        • Ranganath S.H.
        • Levy O.
        • Inamdar M.S.
        • Karp J.M.
        Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease.
        Cell Stem Cell. 2012; 10: 244-258https://doi.org/10.1016/j.stem.2012.02.005
        • Gupta P.K.
        • Krishna M.
        • Chullikana A.
        • Desai S.
        • Murugesan R.
        • Dutta S.
        • et al.
        Administration of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells in critical limb ischemia due to Buerger's disease: phase II study report suggests clinical efficacy.
        STEM CELLS Translational Medicine. 2017; 6: 689-699https://doi.org/10.5966/sctm.2016-0237
      4. Stempeutics Reserch Pvt Lts, Stempeucell, Stempeutron, Stempeucare, Cutisera, Stem Cells n.d.http://www.stempeutics.com/clinical-trials-CLI.html (accessed February 20, 2019).