ERRATUM

Erratum to “Human amniotic epithelial cells conditioned medium attenuates TGF-β1-induced human dermal fibroblasts transformation to myofibroblasts via TGF-β1/Smad3 pathway”

BIN ZHAO#, JIA-QI LIU#, CHEN YANG#, ZHAO ZHENG, QIN ZHOU, HAO GUAN, LIN-LIN SU & DA-HAI HU

Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi, China

The authors regret that there were errors in the above-mentioned article (Cytotherapy. 2016 Aug; 18(8): 1012-1024), which may mislead the readers.

1. After careful scrutiny, we found that the western blot bands published in Fig. 2 were incorrect and had to be replaced. We misused the fibroblasts of keloids instead of adult dermal fibroblasts in Fig. 2B. Also, we misused the adult dermal fibroblasts instead of fibroblast-derived from keloids in Fig. 2F. Now we corrected them. The actual western blot bands in Fig. 2B and Fig. 2F appear below. As well, the bar graphs of Fig. 2C and Fig. 2G showed incorrect values for semi-quantitation of western blots for Fig. 2B and Fig. 2F. The correct Fig. 2 as well as figure legend is provided as follows. The authors declare that the corrections do not influence either the results or the conclusion described in the article.

2. Additionally, there was a mistake in Fig. S6. The representative flow cytometry analysis of cell surface markers was misrepresented where they were not merged with their controls. The authors confirm that the results of AECs remain unchanged, as well as the figure legends. However, after we merged with their controls, the AMCs were negative for pluripotent transcription factors Sox2 and OCT4. These corrections do not change the conclusion of this manuscript because here we just showed the difference especially cell surface markers between AECs and AMCs. The results and conclusions of the article which used AECs, not AMCs, are unaffected by these corrections. The authors sincerely apologize for these mistakes. The corrected Fig. 6S as well as figure legend are provided as follows.

Supplementary materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.jcyt.2019.07.003.

DOI of original article: http://dx.doi.org/10.1016/j.jcyt.2016.04.009.
Corresponding authors: E-mails: linlinsu@fmmu.edu.cn, hudhai@fmmu.edu.cn

These authors contributed equally to this work.

(Received 3 July 2019; accepted 22 July 2019)
Figure 2. Effects of AEC-CM on the levels of α-SMA, Col-I and Col-III in TGF-β1-stimulated adult dermal fibroblasts or keloids fibroblasts. (A) Quantitative real-time PCR for α-SMA, Col-I and Col-III mRNA expression after AEC-CM treatment and/or TGF-β1 stimulation in human adult dermal fibroblasts. (B) Representative images of western blot analysis of α-SMA, Col-I and Col-III protein expression after AEC-CM treatment and/or TGF-β1 stimulation in human adult dermal fibroblasts. (C) Densitometric analyses of α-SMA, Col-I and Col-III were presented beyond the blots. (D) Immunofluorescence of α-SMA of human adult dermal fibroblasts after CM treatment and/or TGF-β1 stimulation was studied. α-SMA is stained with red, and the nucleus is stained with Hoechst33258. Scale bars represent 100 μm. (E) PCR and (F) western blot analysis of human keloid-derived fibroblasts treated with AEC-CM. (G) Densitometric analyses of the expression of α-SMA, Col-I and Col-III on human keloid-derived fibroblasts after the treatment of AEC-CM. Data are represented as mean ± SEM. *P < 0.05.