Advertisement

Gaps in the knowledge of human platelet lysate as a cell culture supplement for cell therapy: a joint publication from the AABB and the International Society for Cell & Gene Therapy

  • Author Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    KAREN Bieback
    Correspondence
    Correspondence: Karen Bieback, PhD, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen gGmbH, Friedrich-Ebert Str. 107, D-68167, Mannheim, Germany.
    Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    Affiliations
    Institute for Transfusion Medicine and Immunology, Flowcore Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg – Hessen gGmbH, Mannheim, Germany
    Search for articles by this author
  • Author Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    BEATRIZ FERNANDEZ-MUÑOZ
    Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    Affiliations
    Unidad de Producción y Reprogramación Celular (UPRC)/Laboratorio Andaluz de Reprogramación Celular (LARCEL), Sevilla, Spain

    Iniciativa Andaluza de Terapias Avanzadas, Sevilla, Spain

    IBiS, Instituto de Biomedicina de Sevilla, Sevilla, Spain
    Search for articles by this author
  • Author Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    SHIBANI PATI
    Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    Affiliations
    Blood Systems Research Institute (BSRI), Blood Systems Inc. (BSI) and University of California San Francisco, San Francisco, California, USA
    Search for articles by this author
  • Author Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    RICHARD SCHÄFER
    Correspondence
    Co-Correspondence: Richard Schäfer, MD, Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg - Hessen gGmbH, Goethe University Hospital, Sandhofstrasse 1, 60528, Frankfurt am Main, Germany.
    Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.
    Affiliations
    Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen gGmbH, Goethe University Hospital, Frankfurt am Main, Germany
    Search for articles by this author
  • Author Footnotes
    ⁎ All authors contributed equally and are listed in alphabetical order.

      Abstract

      Fetal bovine serum (FBS) is used as a growth supplement in a wide range of cell culture applications for cell-based research and therapy. However, as a xenogenic product, FBS can potentially transmit prions and adventitious viruses as well as induce undesirable immunologic reactions. In addition, the use of bovine fetuses for FBS production raises concerns as society looks for ways to replace animal testing and reduce the use of animal products for scientific purposes, in particular for the manufacture of clinical products intended for human use. Until chemically defined media are available for these purposes, human platelet lysate (hPL) has been introduced as an attractive alternative for replacing FBS as a cell culture supplement. hPL is a human product that can be produced from outdated platelets avoiding ethical, medical and animal welfare concerns. An increasing number of studies demonstrate that hPL can promote cell growth similarly or even better than FBS in specific cell types. Due to increasing interest in hPL, the AABB and the International Society of Cell Therapy (ISCT) established a joint working group to address its potential. With this article, we aim to present an overview of hPL, identifying the gaps in information on how hPL is produced and tested and the barriers to its translational use in the production of clinical-grade cell therapy products.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Doucet C.
        • Ernou I.
        • Zhang Y.Z.
        • Llense J.R.
        • Begot L.
        • Holy X.
        • Lataillade J.J.
        Platelet lysates promote mesenchymal stem cell expansion: A safety substitute for animal serum in cell-based therapy applications.
        J Cell Physiol. 2005; 205: 228-236
        • Schallmoser K.
        • Strunk D.
        Generation of a pool of human platelet lysate and efficient use in cell culture.
        Methods in molecular biology. 2013; 946: 349-362
        • Strunk D.
        • Lozano M.
        • Marks D.C.
        • Loh Y.S.
        • Gstraunthaler G.
        • Schennach H.
        • Rohde E.
        • Laner-Plamberger S.
        • Oller M.
        • Nystedt J.
        • Lotfi R.
        • Rojewski M.
        • Schrezenmeier H.
        • Bieback K.
        • Schafer R.
        • Bakchoul T.
        • Waidmann M.
        • Jonsdottir-Buch S.M.
        • Montazeri H.
        • Sigurjonsson O.E.
        • Iudicone P.
        • Fioravanti D.
        • Pierelli L.
        • Introna M.
        • Capelli C.
        • Falanga A.
        • Takanashi M.
        • Lomicronpez-Villar O.
        • Burnouf T.
        • Reems J.A.
        • Pierce J.
        • Preslar A.M.
        • Schallmoser K.
        International Forum on GMP-grade human platelet lysate for cell propagation: summary.
        Vox sanguinis. 2018; 113: 80-87
        • Strunk D.
        • Lozano M.
        • Marks D.C.
        • Loh Y.S.
        • Gstraunthaler G.
        • Schennach H.
        • Rohde E.
        • Laner-Plamberger S.
        • Oller M.
        • Nystedt J.
        • Lotfi R.
        • Rojewski M.
        • Schrezenmeier H.
        • Bieback K.
        • Schafer R.
        • Bakchoul T.
        • Waidmann M.
        • Jonsdottir-Buch S.M.
        • Montazeri H.
        • Sigurjonsson O.E.
        • Iudicone P.
        • Fioravanti D.
        • Pierelli L.
        • Introna M.
        • Capelli C.
        • Falanga A.
        • Takanashi M.
        • Lopez-Villar O.
        • Burnouf T.
        • Reems J.A.
        • Pierce J.
        • Preslar A.M.
        • Schallmoser K.
        International Forum on GMP-grade human platelet lysate for cell propagation.
        Vox sanguinis. 2018; 113: e1-e25
        • Astori G.
        • Amati E.
        • Bambi F.
        • Bernardi M.
        • Chieregato K.
        • Schafer R.
        • Sella S.
        • Rodeghiero F.
        Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future.
        Stem cell research & therapy. 2016; 7: 93
        • Bieback K.
        Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures.
        Transfusion medicine and hemotherapy: offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie. 2013; 40: 326-335
        • Shih D.T.B.
        • Burnouf T.
        Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion.
        New biotechnology. 2015; 32: 199-211
        • Henschler R.
        • Gabriel C.
        • Schallmoser K.
        • Burnouf T.
        • Koh M.B.C.
        Human platelet lysate current standards and future developments.
        Transfusion. 2019; 59: 1407-1413
        • Kinzebach S.
        • Bieback K.
        Expansion of Mesenchymal Stem/Stromal cells under xenogenic-free culture conditions.
        Advances in biochemical engineering/biotechnology. 2013; 129: 33-57
        • van der Valk J.
        • Brunner D.
        • De Smet K.
        • Fex Svenningsen A.
        • Honegger P.
        • Knudsen L.E.
        • Lindl T.
        • Noraberg J.
        • Price A.
        • Scarino M.L.
        • Gstraunthaler G.
        Optimization of chemically defined cell culture media–replacing fetal bovine serum in mammalian in vitro methods.
        Toxicology in vitro: an international journal published in association with BIBRA. 2010; 24: 1053-1063
        • Karnieli O.
        • Friedner O.M.
        • Allickson J.G.
        • Zhang N.
        • Jung S.
        • Fiorentini D.
        • Abraham E.
        • Eaker S.S.
        • Yong T.K.
        • Chan A.
        • Griffiths S.
        • Wehn A.K.
        • Oh S.
        • Karnieli O.
        A consensus introduction to serum replacements and serum-free media for cellular therapies.
        Cytotherapy. 2017; 19: 155-169
      1. International Serum Industry Organisation, FAQ- Bovine Serumhttps://www.serumindustry.org/resources/faq/, Accessed 2 July 2019.

        • Jochems C.E.
        • van der Valk J.B.
        • Stafleu F.R.
        • Baumans V.
        The use of fetal bovine serum: ethical or scientific problem?.
        Alternatives to laboratory animals: ATLA. 2002; 30: 219-227
        • van der Valk J.
        • Mellor D.
        • Brands R.
        • Fischer R.
        • Gruber F.
        • Gstraunthaler G.
        • Hellebrekers L.
        • Hyllner J.
        • Jonker F.H.
        • Prieto P.
        • Thalen M.
        • Baumans V.
        The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture.
        Toxicology In Vitro: an international journal published in association with BIBRA. 2004; 18: 1-12
        • Siegel W.
        • Foster L.
        Fetal Bovine Serum: The Impact of Geography.
        BioProcessing Journal. 2013; 12: 28-30
        • Cheever M.
        • Master A.
        • Versteegen R.
        A method for differentiating fetal bovine serum from newborn calf serum.
        BioProcess J. 2017; 16 (https://doi.org/10.12665/J16OA.Cheever)
        • Reinhardt J.
        • Stuhler A.
        • Blumel J.
        Safety of bovine sera for production of mesenchymal stem cells for therapeutic use.
        Hum Gene Ther. 2011; 22 (author reply 776): 775
      2. European Pharmacopoeia (Ph. Eur.) 9th Edition. Strasbourg, France: Council of Europe; 2017.

      3. EMA/CHMP/BWP/457920/2012 rev 1, Guideline on the use of bovine serum in the manufacture of human biological medicinal products. Accessed June 2019.

        • Sundin M.
        • Ringden O.
        • Sundberg B.
        • Nava S.
        • Gotherstrom C.
        • Le Blanc K.
        No alloantibodies against mesenchymal stromal cells, but presence of anti-fetal calf serum antibodies, after transplantation in allogeneic hematopoietic stem cell recipients.
        Haematol-Hematol J. 2007; 92: 1208-1215
      4. EMA/410/01 rev. 3, Note for Guidance on Minimising the Risk of Transmitting Animal Spongiform Encephalopathy Agents Via Human and Veterinary Medicinal Products.

        • Choi Y.C.
        • Morris G.M.
        • Sokoloff L.
        Effect of platelet lysate on growth and sulfated glycosaminoglycan synthesis in articular chondrocyte cultures.
        Arthritis and rheumatism. 1980; 23: 220-224
        • Eastment C.T.
        • Sirbasku D.A.
        Human platelet lysate contains growth factor activities for established cell lines derived from various tissues of several species.
        In Vitro. 1980; 16: 694-705
        • Hara Y.
        • Steiner M.
        • Baldini M.G.
        Platelets as a Source of Growth-Promoting Factor(S) for Tumor-Cells.
        Cancer Res. 1980; 40: 1212-1216
        • Lucarelli E.
        • Beccheroni A.
        • Donati D.
        • Sangiorgi L.
        • Cenacchi A.
        • Del Vento A.M.
        • Meotti C.
        • Bertoja A.Z.
        • Giardino R.
        • Fornasari P.M.
        • Mercuri M.
        • Picci P.
        Platelet-derived growth factors enhance proliferation of human stromal stem cells.
        Biomaterials. 2003; 24: 3095-3100
        • Astori G.
        • Amati E.
        • Bambi F.
        • Bernardi M.
        • Chieregato K.
        • Schafer R.
        • Sella S.
        • Rodeghiero F.
        Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future.
        Stem cell research & therapy. 2016; 7 (https://doi.org/10.1186/s13287-016-0352-x): 93
        • Burnouf T.
        • Strunk D.
        • Koh M.B.C.
        • Schallmoser K.
        Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?.
        Biomaterials. 2016; 76: 371-387
        • Muraglia A.
        • Nguyen V.T.
        • Nardini M.
        • Mogni M.
        • Coviello D.
        • Dozin B.
        • Strada P.
        • Baldelli I.
        • Formica M.
        • Cancedda R.
        • Mastrogiacomo M.
        Culture Medium Supplements Derived from Human Platelet and Plasma: Cell Commitment and Proliferation Support.
        Frontiers in bioengineering and biotechnology. 2017; 5: 66
        • Phinney D.G.
        • Prockop D.J.
        Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views.
        Stem cells (Dayton, Ohio). 2007; 25: 2896-2902
        • Phinney D.G.
        • Pittenger M.F.
        Concise Review: MSC-Derived Exosomes for Cell-Free Therapy.
        Stem cells (Dayton, Ohio). 2017; 35: 851-858
        • Dozza B.
        • Di Bella C.
        • Lucarelli E.
        • Giavaresi G.
        • Fini M.
        • Tazzari P.L.
        • Giannini S.
        • Donati D.
        Mesenchymal stem cells and platelet lysate in fibrin or collagen scaffold promote non-cemented hip prosthesis integration.
        Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2011; 29: 961-968
        • Lange C.
        • Brunswig-Spickenheier B.
        • Eissing L.
        • Scheja L.
        Platelet lysate suppresses the expression of lipocalin-type prostaglandin D2 synthase that positively controls adipogenic differentiation of human mesenchymal stromal cells.
        Experimental cell research. 2012; 318: 2284-2296
        • Abdelrazik H.
        • Spaggiari G.M.
        • Chiossone L.
        • Moretta L.
        Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function.
        European journal of immunology. 2011; 41: 3281-3290
        • Flemming A.
        • Schallmoser K.
        • Strunk D.
        • Stolk M.
        • Volk H.D.
        • Seifert M.
        Immunomodulative efficacy of bone marrow-derived mesenchymal stem cells cultured in human platelet lysate.
        Journal of clinical immunology. 2011; 31: 1143-1156
        • Perez-Ilzarbe M.
        • Diez-Campelo M.
        • Aranda P.
        • Tabera S.
        • Lopez T.
        • del Canizo C.
        • Merino J.
        • Moreno C.
        • Andreu E.J.
        • Prosper F.
        • Perez-Simon J.A.
        Comparison of ex vivo expansion culture conditions of mesenchymal stem cells for human cell therapy.
        Transfusion. 2009; 49: 1901-1910
        • Sharma R.R.
        • Pollock K.
        • Hubel A.
        • McKenna D.
        Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices.
        Transfusion. 2014; 54: 1418-1437
        • Trento C.
        • Bernardo M.E.
        • Nagler A.
        • Kuci S.
        • Bornhauser M.
        • Kohl U.
        • Strunk D.
        • Galleu A.
        • Sanchez-Guijo F.
        • Gaipa G.
        • Introna M.
        • Bukauskas A.
        • Le Blanc K.
        • Apperley J.
        • Roelofs H.
        • Van Campenhout A.
        • Beguin Y.
        • Kuball J.
        • Lazzari L.
        • Avanzini M.A.
        • Fibbe W.
        • Chabannon C.
        • Bonini C.
        • Dazzi F.
        Manufacturing Mesenchymal Stromal Cells for the Treatment of Graft-versus-Host Disease: A Survey among Centers Affiliated with the European Society for Blood and Marrow Transplantation.
        Biol Blood Marrow Transplant. 2018; 24: 2365-2370
        • Centeno C.J.
        • Schultz J.R.
        • Cheever M.
        • Freeman M.
        • Faulkner S.
        • Robinson B.
        • Hanson R.
        Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique.
        Current stem cell research & therapy. 2011; 6: 368-378
        • Introna M.
        • Lucchini G.
        • Dander E.
        • Galimberti S.
        • Rovelli A.
        • Balduzzi A.
        • Longoni D.
        • Pavan F.
        • Masciocchi F.
        • Algarotti A.
        • Mico C.
        • Grassi A.
        • Deola S.
        • Cavattoni I.
        • Gaipa G.
        • Belotti D.
        • Perseghin P.
        • Parma M.
        • Pogliani E.
        • Golay J.
        • Pedrini O.
        • Capelli C.
        • Cortelazzo S.
        • D'Amico G.
        • Biondi A.
        • Rambaldi A.
        • Biagi E.
        Treatment of graft versus host disease with mesenchymal stromal cells: a phase I study on 40 adult and pediatric patients.
        Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation. 2014; 20: 375-381
        • von Bonin M.
        • Stolzel F.
        • Goedecke A.
        • Richter K.
        • Wuschek N.
        • Holig K.
        • Platzbecker U.
        • Illmer T.
        • Schaich M.
        • Schetelig J.
        • Kiani A.
        • Ordemann R.
        • Ehninger G.
        • Schmitz M.
        • Bornhauser M.
        Treatment of refractory acute GVHD with third-party MSC expanded in platelet lysate-containing medium.
        Bone marrow transplantation. 2009; 43: 245-251
        • Copland I.B.
        • Garcia M.A.
        • Waller E.K.
        • Roback J.D.
        • Galipeau J.
        The effect of platelet lysate fibrinogen on the functionality of MSCs in immunotherapy.
        Biomaterials. 2013; 34: 7840-7850
        • Kocaoemer A.
        • Kern S.
        • Kluter H.
        • Bieback K.
        Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue.
        Stem cells (Dayton, Ohio). 2007; 25: 1270-1278
        • Kinzebach S.
        • Dietz L.
        • Kluter H.
        • Thierse H.J.
        • Bieback K.
        Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells.
        BMC cell biology. 2013; 14: 48
        • Bieback K.
        • Hecker A.
        • Kocaomer A.
        • Lannert H.
        • Schallmoser K.
        • Strunk D.
        • Kluter H.
        Human alternatives to fetal bovine serum for the expansion of mesenchymal stromal cells from bone marrow.
        Stem cells (Dayton, Ohio). 2009; 27: 2331-2341
        • Blande I.S.
        • Bassaneze V.
        • Lavini-Ramos C.
        • Fae K.C.
        • Kalil J.
        • Miyakawa A.A.
        • Schettert I.T.
        • Krieger J.E.
        Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate.
        Transfusion. 2009; 49: 2680-2685
        • Menard C.
        • Pacelli L.
        • Bassi G.
        • Dulong J.
        • Bifari F.
        • Bezier I.
        • Zanoncello J.
        • Ricciardi M.
        • Latour M.
        • Bourin P.
        • Schrezenmeier H.
        • Sensebe L.
        • Tarte K.
        • Krampera M.
        Clinical-Grade Mesenchymal Stromal Cells Produced Under Various Good Manufacturing Practice Processes Differ in Their Immunomodulatory Properties: Standardization of Immune Quality Controls.
        Stem cells and development. 2013; 22: 1789-1801
        • Muller A.M.
        • Davenport M.
        • Verrier S.
        • Droeser R.
        • Alini M.
        • Bocelli-Tyndall C.
        • Schaefer D.J.
        • Martin I.
        • Scherberich A.
        Platelet Lysate as a Serum Substitute for 2D Static and 3D Perfusion Culture of Stromal Vascular Fraction Cells from Human Adipose Tissue.
        Tissue Eng Pt A. 2009; 15: 869-875
        • Burnouf T.
        • Strunk D.
        • Koh M.B.
        • Schallmoser K.
        Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation?.
        Biomaterials. 2016; 76: 371-387
        • Mannello F.
        • Tonti G.A.
        Concise review: no breakthroughs for human mesenchymal and embryonic stem cell culture: conditioned medium, feeder layer, or feeder-free; medium with fetal calf serum, human serum, or enriched plasma; serum-free, serum replacement nonconditioned medium, or ad hoc formula? All that glitters is not gold!.
        Stem cells (Dayton, Ohio). 2007; 25: 1603-1609
        • Stühler A.
        • Blümel J.
        Spezifische Aspekte zur Virussicherheit von Produktionshilfsstoffen für somatische Zelltherapie-Arzneimittel.
        Bundesgesundheitsbl. 2015; 58: 1233-1238
        • Horn P.
        • Bokermann G.
        • Cholewa D.
        • Bork S.
        • Walenda T.
        • Koch C.
        • Drescher W.
        • Hutschenreuther G.
        • Zenke M.
        • Ho A.D.
        • Wagner W.
        Impact of individual platelet lysates on isolation and growth of human mesenchymal stromal cells.
        Cytotherapy. 2010; 12: 888-898
        • Lohmann M.
        • Walenda G.
        • Hemeda H.
        • Joussen S.
        • Drescher W.
        • Jockenhoevel S.
        • Hutschenreuter G.
        • Zenke M.
        • Wagner W.
        Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells.
        PloS one. 2012; 7: e37839
        • Tan C.B.
        • Shichinohe H.
        • Wang Z.F.
        • Hamauchi S.
        • Abumiya T.
        • Nakayama N.
        • Kazumata K.
        • Ito T.
        • Kudo K.
        • Takamoto S.
        • Houkin K.
        Feasibility and Efficiency of Human Bone Marrow Stromal Cell Culture with Allogeneic Platelet Lysate-Supplementation for Cell Therapy against Stroke.
        Stem cells international. 2016; 2016 (https://doi.org/10.1155/2016/6104780): 6104780
        • Shih D.T.
        • Burnouf T.
        Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion.
        New biotechnology. 2015; 32: 199-211
        • Shih D.T.
        • Chen J.C.
        • Chen W.Y.
        • Kuo Y.P.
        • Su C.Y.
        • Burnouf T.
        Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate.
        Transfusion. 2011; 51: 770-778
        • Singh R.P.
        • Marwaha N.
        • Malhotra P.
        • Dash S.
        Quality assessment of platelet concentrates prepared by platelet rich plasma-platelet concentrate, buffy coat poor-platelet concentrate (BC-PC) and apheresis-PC methods.
        Asian J Transfus Sci. 2009; 3: 86-94
        • Sonker A.
        • Dubey A.
        Determining the Effect of Preparation and Storage: An Effort to Streamline Platelet Components as a Source of Growth Factors for Clinical Application.
        Transfus Med Hemoth. 2015; 42: 176-182
        • Fekete N.
        • Gadelorge M.
        • Furst D.
        • Maurer C.
        • Dausend J.
        • Fleury-Cappellesso S.
        • Mailander V.
        • Lotfi R.
        • Ignatius A.
        • Sensebe L.
        • Bourin P.
        • Schrezenmeier H.
        • Rojewski M.T.
        Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components.
        Cytotherapy. 2012; 14: 540-554
        • Chan R.K.
        • Liu P.
        • Lew D.H.
        • Ibrahim S.I.
        • Srey R.
        • Valeri C.R.
        • Hechtman H.B.
        • Orgill D.P.
        Expired liquid preserved platelet releasates retain proliferative activity.
        J Surg Res. 2005; 126: 55-58
        • Jonsdottir-Buch S.M.
        • Sigurgrimsdottir H.
        • Lieder R.
        • Sigurjonsson O.E.
        Expired and Pathogen-Inactivated Platelet Concentrates Support Differentiation and Immunomodulation of Mesenchymal Stromal Cells in Culture.
        Cell transplantation. 2015; 24: 1545-1554
        • Glovinski P.V.
        • Herly M.
        • Mathiasen A.B.
        • Svalgaard J.D.
        • Borup R.
        • Talman M.M.
        • Elberg J.J.
        • Kolle S.T.
        • Drzewiecki K.T.
        • Fischer-Nielsen A.
        Overcoming the bottleneck of platelet lysate supply in large-scale clinical expansion of adipose-derived stem cells: A comparison of fresh versus three types of platelet lysates from outdated buffy coat-derived platelet concentrates.
        Cytotherapy. 2017; 19: 222-234
        • Dessels C.
        • Durandt C.
        • Pepper M.S.
        Comparison of human platelet lysate alternatives using expired and freshly isolated platelet concentrates for adipose-derived stromal cell expansion.
        Platelets. 2019; 30 (https://doi.org/10.1080/09537104.2018.1445840): 356-367
        • Laitinen A.
        • Oja S.
        • Kilpinen L.
        • Kaartinen T.
        • Moller J.
        • Laitinen S.
        • Korhonen M.
        • Nystedt J.
        A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells.
        Cytotechnology. 2016; 68: 891-906
        • Mojica-Henshaw M.P.
        • Jacobson P.
        • Morris J.
        • Kelley L.
        • Pierce J.
        • Boyer M.
        • Reems J.A.
        Serum-converted platelet lysate can substitute for fetal bovine serum in human mesenchymal stromal cell cultures.
        Cytotherapy. 2013; 15: 1458-1468
        • Bottio T.
        • Pittarello G.
        • Bonato R.
        • Fagiolo U.
        • Gerosa G.
        Life-threatening anaphylactic shock caused by porcine heparin intravenous infusion during mitral valve repair.
        J Thorac Cardiovasc Surg. 2003; 126: 1194-1195
        • Huang Q.
        • Xu T.
        • Wang G.Y.
        • Huang J.F.
        • Xia H.
        • Yin R.
        • Tang A.
        • Fu W.L.
        Species-specific identification of ruminant components contaminating industrial crude porcine heparin using real-time fluorescent qualitative and quantitative PCR.
        Anal Bioanal Chem. 2012; 402: 1625-1634
        • Harada A.
        • Tatsuno K.
        • Kikuchi T.
        • Takahashi Y.
        • Sai S.
        • Murakami Y.
        • Takada K.
        Use of Bovine Lung Heparin to Obviate Anaphylactic Shock Caused by Porcine Gut Heparin.
        Ann Thorac Surg. 1990; 49: 826-827
        • Liu H.
        • Zhang Z.
        • Linhardt R.J.
        Lessons learned from the contamination of heparin.
        Nat Prod Rep. 2009; 26: 313-321
        • Sakr Y.
        Heparin-induced thrombocytopenia in the ICU: an overview.
        Crit Care. 2011; 15: 211
        • Schallmoser K.
        • Rohde E.
        • Reinisch A.
        • Bartmann C.
        • Thaler D.
        • Drexler C.
        • Obenauf A.C.
        • Lanzer G.
        • Linkesch W.
        • Strunk D.
        Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum.
        Tissue engineering. Part C, Methods. 2008; 14: 185-196
        • Hemeda H.
        • Kalz J.
        • Walenda G.
        • Lohmann M.
        • Wagner W.
        Heparin concentration is critical for cell culture with human platelet lysate.
        Cytotherapy. 2013; 15: 1174-1181
        • Seeger F.H.
        • Rasper T.
        • Fischer A.
        • Muhly-Reinholz M.
        • Hergenreider E.
        • Leistner D.M.
        • Sommer K.
        • Manavski Y.
        • Henschler R.
        • Chavakis E.
        • Assmus B.
        • Zeiher A.M.
        • Dimmeler S.
        Heparin Disrupts the CXCR4/SDF-1 Axis and Impairs the Functional Capacity of Bone Marrow-Derived Mononuclear Cells Used for Cardiovascular Repair.
        Circulation research. 2012; 111: 854-862
        • Chandarajoti K.
        • Liu J.
        • Pawlinski R.
        The design and synthesis of new synthetic low-molecular-weight heparins.
        J Thromb Haemost. 2016; 14: 1135-1145
        • Rauch C.
        • Feifel E.
        • Amann E.M.
        • Spotl H.P.
        • Schennach H.
        • Pfaller W.
        • Gstraunthaler G.
        Alternatives to the use of fetal bovine serum: human platelet lysates as a serum substitute in cell culture media.
        Altex. 2011; 28: 305-316
        • Pierce J.
        • Benedetti E.
        • Preslar A.
        • Jacobson P.
        • Jin P.
        • Stroncek D.F.
        • Reems J.A.
        Comparative analyses of industrial-scale human platelet lysate preparations.
        Transfusion. 2017; 57: 2858-2869
        • Verma A.
        • Agarwal P.
        Platelet utilization in the developing world: Strategies to optimize platelet transfusion practices.
        Transfus Apher Sci. 2009; 41: 145-149
        • Hourfar M.K.
        • Jork C.
        • Schottstedt V.
        • Weber-Schehl M.
        • Brixner V.
        • Busch M.P.
        • Geusendam G.
        • Gubbe K.
        • Mahnhardt C.
        • Mayr-Wohlfart U.
        • Pichl L.
        • Roth W.K.
        • Schmidt M.
        • Seifried E.
        • Wright D.J.
        • N.A.T.S.G. German Red Cross
        Experience of German Red Cross blood donor services with nucleic acid testing: results of screening more than 30 million blood donations for human immunodeficiency virus-1, hepatitis C virus, and hepatitis B virus.
        Transfusion. 2008; 48: 1558-1566
        • Schmidt M.
        • Geilenkeuser W.J.
        • Sireis W.
        • Seifried E.
        • Hourfar K.
        Emerging Pathogens - How Safe is Blood?.
        Transfus Med Hemoth. 2014; 41: 10-17
        • Williamson P.C.
        • Linnen J.M.
        • Kessler D.A.
        • Shaz B.H.
        • Kamel H.
        • Vassallo R.R.
        • Winkelman V.
        • Gao K.
        • Ziermann R.
        • Menezes J.
        • Thomas S.
        • Holmberg J.A.
        • Bakkour S.
        • Stone M.
        • Lu K.
        • Simmons G.
        • Busch M.P.
        First cases of Zika virus-infected US blood donors outside states with areas of active transmission.
        Transfusion. 2017; 57: 770-778
        • Galel S.A.
        • Williamson P.C.
        • Busch M.P.
        • Stanek D.
        • Bakkour S.
        • Stone M.
        • Lu K.
        • Jones S.
        • Rossmann S.N.
        • Pate L.L.
        • C.Z.I.S. Grp
        First Zika-positive donations in the continental United States.
        Transfusion. 2017; 57: 762-769
        • Seltsam A.
        • Muller T.H.
        Update on the use of pathogen-reduced human plasma and platelet concentrates.
        British journal of haematology. 2013; 162: 442-454
        • Rasongles P.
        • Angelini-Tibert M.F.
        • Simon P.
        • Currie C.
        • Isola H.
        • Kientz D.
        • Slaedts M.
        • Jacquet M.
        • Sundin D.
        • Lin L.
        • Corash L.
        • Cazenave J.P.
        Transfusion of platelet components prepared with photochemical pathogen inactivation treatment during a Chikungunya virus epidemic in Ile de La REunion.
        Transfusion. 2009; 49: 1083-1091
        • Geisen C.
        • Kann G.
        • Strecker T.
        • Wolf T.
        • Schuttfort G.
        • van Kraaij M.
        • MacLennan S.
        • Rummler S.
        • Weinigel C.
        • Eickmann M.
        • Fehling S.K.
        • Krahling V.
        • Seidl C.
        • Seifried E.
        • Schmidt M.
        • Schafer R.
        Pathogen-reduced Ebola virus convalescent plasma: first steps towards standardization of manufacturing and quality control including assessment of Ebola-specific neutralizing antibodies.
        Vox sanguinis. 2016; 110: 329-335
        • Salunkhe V.
        • van der Meer P.F.
        • de Korte D.
        • Seghatchian J.
        • Gutierrez L.
        Development of blood transfusion product pathogen reduction treatments: A review of methods, current applications and demands.
        Transfus Apher Sci. 2015; 52: 19-34
        • Nkohkwo A.
        • Agbor G.
        • Asongalem E.
        • Tagny C.
        • Asonganyi T.
        Whole blood pathogen reduction technology and blood safety in sub-Saharan Africa: A systematic review with regional discussion.
        Afr J Lab Med. 2016; 5: 363
        • Seltsam A.
        • Muller T.H.
        UVC Irradiation for Pathogen Reduction of Platelet Concentrates and Plasma.
        Transfusion medicine and hemotherapy: offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie. 2011; 38: 43-54
        • Burnouf T.
        • Tseng Y.H.
        • Kuo Y.P.
        • Su C.Y.
        Solvent/detergent treatment of platelet concentrates enhances the release of growth factors.
        Transfusion. 2008; 48: 1090-1098
        • Lee Y.L.
        • Lee L.W.
        • Su C.Y.
        • Hsiao G.
        • Yang Y.Y.
        • Leu S.J.
        • Shieh Y.H.
        • Burnouf T.
        Virally inactivated human platelet concentrate lysate induces regulatory T cells and immunosuppressive effect in a murine asthma model.
        Transfusion. 2013; 53: 1918-1928
        • Viau S.
        • Eap S.
        • Chabrand L.
        • Lagrange A.
        • Delorme B.
        Viral inactivation of human platelet lysate by gamma irradiation preserves its optimal efficiency in the expansion of human bone marrow mesenchymal stromal cells.
        Transfusion. 2019; 59: 1069-1079
        • Prowse C.V.
        Component pathogen inactivation: a critical review.
        Vox sanguinis. 2013; 104: 183-199
        • Osman A.
        • Hitzler W.E.
        • Ameur A.
        • Provost P.
        Differential Expression Analysis by RNA-Seq Reveals Perturbations in the Platelet mRNA Transcriptome Triggered by Pathogen Reduction Systems.
        PloS one. 2015; 10 (https://doi.org/10.1371/journal.pone.0133070): e0133070
        • Osman A.
        • Hitzler W.E.
        • Meyer C.U.
        • Landry P.
        • Corduan A.
        • Laffont B.
        • Boilard E.
        • Hellstern P.
        • Vamvakas E.C.
        • Provost P.
        Effects of pathogen reduction systems on platelet microRNAs, mRNAs, activation, and function.
        Platelets. 2015; 26: 154-163
        • Prudent M.
        • D'Alessandro A.
        • Cazenave J.P.
        • Devine D.V.
        • Gachet C.
        • Greinacher A.
        • Lion N.
        • Schubert P.
        • Steil L.
        • Thiele T.
        • Tissot J.D.
        • Volker U.
        • Zolla L.
        Proteome Changes in Platelets After Pathogen Inactivation-An Interlaboratory Consensus.
        Transfus Med Rev. 2014; 28: 72-83
        • Viau S.
        • Chabrand L.
        • Eap S.
        • Lorant J.
        • Rouger K.
        • Goudaliez F.
        • Sumian C.
        • Delorme B.
        Pathogen reduction through additive-free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells.
        PloS one. 2017; 12 (https://doi.org/10.1371/journal.pone.0181406): e0181406
        • Iudicone P.
        • Fioravanti D.
        • Bonanno G.
        • Miceli M.
        • Lavorino C.
        • Totta P.
        • Frati L.
        • Nuti M.
        • Pierelli L.
        Pathogen-free, plasma-poor platelet lysate and expansion of human mesenchymal stem cells.
        Journal of translational medicine. 2014; 12: 28
        • Castiglia S.
        • Mareschi K.
        • Labanca L.
        • Lucania G.
        • Leone M.
        • Sanavio F.
        • Castello L.
        • Rustichelli D.
        • Signorino E.
        • Gunetti M.
        • Bergallo M.
        • Bordiga A.M.
        • Ferrero I.
        • Fagioli F.
        Inactivated human platelet lysate with psoralen: a new perspective for mesenchymal stromal cell production in Good Manufacturing Practice conditions.
        Cytotherapy. 2014; 16: 750-763
        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • Slaper-Cortenbach I.
        • Marini F.C.
        • Krause D.S.
        • Deans R.J.
        • Keating A.
        • Prockop D.J.
        • Horwitz E.M.
        Minimal criteria for defining multipotent mesenchymal stromal cells.
        The International Society for Cellular Therapy position statement, Cytotherapy. 2006; 8: 315-317
        • Haack-Sorensen M.
        • Juhl M.
        • Follin B.
        • Sondergaard R.H.
        • Kirchhoff M.
        • Kastrup J.
        • Ekblond A.
        Development of large-scale manufacturing of adipose-derived stromal cells for clinical applications using bioreactors and human platelet lysate.
        Scand J Clin Lab Inv. 2018; 78: 293-300
        • Gadelorge M.
        • Bourdens M.
        • Espagnolle N.
        • Bardiaux C.
        • Murrell J.
        • Savary L.
        • Ribaud S.
        • Chaput B.
        • Sensebe L.
        Clinical-scale expansion of adipose-derived stromal cells starting from stromal vascular fraction in a single-use bioreactor: proof of concept for autologous applications.
        Journal of tissue engineering and regenerative medicine. 2018; 12: 129-141
        • Rojewski M.T.
        • Fekete N.
        • Baila S.
        • Nguyen K.
        • Furst D.
        • Antwiler D.
        • Dausend J.
        • Kreja L.
        • Ignatius A.
        • Sensebe L.
        • Schrezenmeier H.
        GMP-Compliant Isolation and Expansion of Bone Marrow-Derived MSCs in the Closed, Automated Device Quantum Cell Expansion System.
        Cell transplantation. 2013; 22: 1981-2000
        • Moraes V.Y.
        • Lenza M.
        • Tamaoki M.J.
        • Faloppa F.
        • Belloti J.C.
        Platelet-rich therapies for musculoskeletal soft tissue injuries.
        Cochrane Database Syst Rev. 2013; CD010071
        • Nguyen V.T.
        • Cancedda R.
        • Descalzi F.
        Platelet lysate activates quiescent cell proliferation and reprogramming in human articular cartilage: Involvement of hypoxia inducible factor 1.
        Journal of tissue engineering and regenerative medicine. 2018; 12: e1691-e1703
        • Pereira R.C.
        • Scaranari M.
        • Benelli R.
        • Strada P.
        • Reis R.L.
        • Cancedda R.
        • Gentili C.
        Dual effect of platelet lysate on human articular cartilage: a maintenance of chondrogenic potential and a transient proinflammatory activity followed by an inflammation resolution.
        Tissue engineering. Part A. 2013; 19: 1476-1488
        • Nowakowska P.
        • Romanski A.
        • Miller N.
        • Odendahl M.
        • Bonig H.
        • Zhang C.
        • Seifried E.
        • Wels W.S.
        • Tonn T.
        Clinical grade manufacturing of genetically modified, CAR-expressing NK-92 cells for the treatment of ErbB2-positive malignancies.
        Cancer immunology, immunotherapy: CII. 2018; 67: 25-38
        • Svajger U.
        Human platelet lysate is a successful alternative serum supplement for propagation of monocyte-derived dendritic cells.
        Cytotherapy. 2017; 19: 486-499
        • Reinisch A.
        • Hofmann N.A.
        • Obenauf A.C.
        • Kashofer K.
        • Rohde E.
        • Schallmoser K.
        • Flicker K.
        • Lanzer G.
        • Linkesch W.
        • Speicher M.R.
        • Strunk D.
        Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo.
        Blood. 2009; 113: 6716-6725
        • Siegel G.
        • Fleck E.
        • Elser S.
        • Hermanutz-Klein U.
        • Waidmann M.
        • Northoff H.
        • Seifried E.
        • Schafer R.
        Manufacture of endothelial colony-forming progenitor cells from steady-state peripheral blood leukapheresis using pooled human platelet lysate.
        Transfusion. 2018; 58: 1132-1142
        • Tasev D.
        • van Wijhe M.H.
        • Weijers E.M.
        • van Hinsbergh V.W.
        • Koolwijk P.
        Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity.
        PloS one. 2015; 10e0129935
        • Hofbauer P.
        • Riedl S.
        • Witzeneder K.
        • Hildner F.
        • Wolbank S.
        • Groeger M.
        • Gabriel C.
        • Redl H.
        • Holnthoner W.
        Human platelet lysate is a feasible candidate to replace fetal calf serum as medium supplement for blood vascular and lymphatic endothelial cells.
        Cytotherapy. 2014; 16: 1238-1244
        • Thieme D.
        • Reuland L.
        • Lindl T.
        • Kruse F.
        • Fuchsluger T.
        Optimized human platelet lysate as novel basis for a serum-, xeno-, and additive-free corneal endothelial cell and tissue culture.
        Journal of tissue engineering and regenerative medicine. 2018; 12: 557-564
        • Ruggiu A.
        • Ulivi V.
        • Sanguineti F.
        • Cancedda R.
        • Descalzi F.
        The effect of Platelet Lysate on osteoblast proliferation associated with a transient increase of the inflammatory response in bone regeneration.
        Biomaterials. 2013; 34: 9318-9330
        • Baik S.Y.
        • Lim Y.A.
        • Kang S.J.
        • Ahn S.H.
        • Lee W.G.
        • Kim C.H.
        Effects of platelet lysate preparations on the proliferation of HaCaT cells.
        Annals of laboratory medicine. 2014; 34: 43-50
        • Fazzina R.
        • Iudicone P.
        • Mariotti A.
        • Fioravanti D.
        • Procoli A.
        • Cicchetti E.
        • Scambia G.
        • Bonanno G.
        • Pierelli L.
        Culture of human cell lines by a pathogen-inactivated human platelet lysate.
        Cytotechnology. 2016; 68: 1185-1195