Advertisement

Critical testing and parameters for consideration when manufacturing and evaluating tumor–associated antigen-specific T cells

  • Jay G. Tanna
    Affiliations
    Program for Cell Enhancement and Technologies for Immunotherapy, Center for Cancer and Immunology Research
    Search for articles by this author
  • Robert Ulrey
    Affiliations
    Program for Cell Enhancement and Technologies for Immunotherapy, Center for Cancer and Immunology Research
    Search for articles by this author
  • Kirsten M. Williams
    Affiliations
    Program for Cell Enhancement and Technologies for Immunotherapy, Center for Cancer and Immunology Research

    Center for Cancer and Blood Disorders, and the Division of Blood and Marrow Transplantation

    Children's National Health System and The George Washington University, Washington, DC, USA
    Search for articles by this author
  • Patrick J. Hanley
    Correspondence
    Correspondence: Patrick J. Hanley, PhD, 111 Michigan Ave NW Washington, DC 20010 USA.
    Affiliations
    Program for Cell Enhancement and Technologies for Immunotherapy, Center for Cancer and Immunology Research

    Center for Cancer and Blood Disorders, and the Division of Blood and Marrow Transplantation

    Children's National Health System and The George Washington University, Washington, DC, USA
    Search for articles by this author
Published:March 28, 2019DOI:https://doi.org/10.1016/j.jcyt.2019.02.004

      Abstract

      The past year has seen remarkable translation of cellular and gene therapies, with U.S. Food and Drug Administration (FDA) approval of three chimeric antigen receptor (CAR) T-cell products, multiple gene therapy products, and the initiation of countless other pivotal clinical trials. What makes these new drugs most remarkable is their path to commercialization: they have unique requirements compared with traditional pharmaceutical drugs and require different potency assays, critical quality attributes and parameters, pharmacological and toxicological data, and in vivo efficacy testing. What's more, each biologic requires its own unique set of tests and parameters. Here we describe the unique tests associated with ex vivo–expanded tumor-associated antigen T cells (TAA-T). These tests include functional assays to determine potency, specificity, and identity; tests for pathogenic contaminants, such as bacteria and fungus as well as other contaminants such as Mycoplasma and endotoxin; tests for product characterization, tests to evaluate T-cell persistence and product efficacy; and finally, recommendations for critical quality attributes and parameters associated with the expansion of TAA-Ts.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fesnak A.D.
        • Hanley P.J.
        • Levine B.L.
        Considerations in T Cell therapy product development for b cell leukemia and lymphoma immunotherapy.
        Curr Hematol Malig Rep. 2017; 12: 335-343
        • CAR T-Cell therapy approved for some children and young adults with leukemia; 2017
        (Available from)
        • Saudemont A.
        • Jespers L.
        • Clay T.
        Current status of gene engineering cell therapeutics.
        Front Immunol. 2018; 9: 153
        • Neelapu S.S.
        • Locke F.L.
        • Bartlett N.L.
        • Lekakis L.J.
        • Miklos D.B.
        • Jacobson C.A.
        • et al.
        Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma.
        N Engl J Med. 2017; 377: 2531-2544
        • Maude S.L.
        • Laetsch T.W.
        • Buechner J.
        • Rives S.
        • Boyer M.
        • Bittencourt H.
        • et al.
        Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia.
        N Engl J Med. 2018; 378: 439-448
        • Schuster S.J.
        • Svoboda J.
        • Chong E.A.
        • Nasta S.D.
        • Mato A.R.
        • Anak O.
        • et al.
        Chimeric antigen receptor T cells in refractory B-cell lymphomas.
        N Engl J Med. 2017; 377: 2545-2554
        • Bach P.B.
        • Giralt S.A.
        • Saltz L.B.
        FDA approval of tisagenlecleucel: promise and complexities of a $475 000 cancer drug.
        JAMA. 2017; 318: 1861-1862
        • Bear A.S.
        • Morgan R.A.
        • Cornetta K.
        • June C.H.
        • Binder-Scholl G.
        • Dudley M.E.
        • et al.
        Replication-competent retroviruses in gene-modified T cells used in clinical trials: is it time to revise the testing requirements?.
        Mol Ther. 2012; 20: 246-249
        • Levine B.L.
        • Miskin J.
        • Wonnacott K.
        • Keir C.
        Global manufacturing of CAR T cell therapy.
        Mol Ther Methods Clin Dev. 2017; 4: 92-101
        • Lin J.K.
        • Lerman B.J.
        • Barnes J.I.
        • Boursiquot B.C.
        • Tan Y.J.
        • Robinson A.Q.L.
        • et al.
        Cost effectiveness of chimeric antigen receptor T-cell therapy in relapsed or refractory pediatric B-cell acute lymphoblastic leukemia.
        J Clin Oncol. 2018; (Jco2018790642)
        • Williams K.M.
        • Hanley M.Grant
        • Fortiz M.F.
        • Stanojevic M.
        • Ismail M.
        • et al.
        Complete remissions post infusion of multiple tumor antigen specific T cells for the treatment of high risk leukemia and lymphoma patients after HCT.
        Blood. 2017; 130 (4516)
        • Weber G.
        • Gerdemann U.
        • Caruana I.
        • Savoldo B.
        • Hensel N.F.
        • Rabin K.R.
        • et al.
        Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant.
        Leukemia. 2013; 27: 1538-1547
        • van den Berg J.H.
        • Gomez-Eerland R.
        • van de Wiel B.
        • Hulshoff L.
        • van den Broek D.
        • Bins A.
        • et al.
        Case Report of a Fatal Serious Adverse Event Upon Administration of T Cells Transduced With a MART-1-specific T-cell Receptor.
        Mol Ther. 2015; 23: 1541-1550
        • Tey S.K.
        Adoptive T-cell therapy: adverse events and safety switches.
        Clin Transl Immunology. 2014; 3: e17
        • Dudley M.E.
        • Wunderlich J.R.
        • Robbins P.F.
        • Yang J.C.
        • Hwu
        • Schwartzentruber D.J.
        • et al.
        Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes.
        Science. 2002; 298: 850-854
        • Johnson L.A.
        • Morgan R.A.
        • Dudley M.E.
        • Cassard L.
        • Yang J.C.
        • Hughes M.S.
        • et al.
        Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen.
        Blood. 2009; 114: 535-546
        • Yee C.
        • Thompson J.A.
        • Roche
        • Byrd D.R.
        • Lee P.
        • Piepkorn M.
        • et al.
        Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo.
        J Exp Med. 2000; 192: 1637-1644
        • Cameron B.J.
        • Gerry A.B.
        • Dukes J.
        • Harper J.V.
        • Kannan V.
        • Bianchi F.C.
        • et al.
        Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells.
        Sci Transl Med. 2013; 5 (197ra103)
        • Linette G.P.
        • Stadtmauer E.A.
        • Maus M.V.
        • Rapoport A.
        • Levine B.L.
        • Emery L.
        • et al.
        Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma.
        Blood. 2013; 122: 863-871
        • Quatromoni J.G.
        • Predina J.D.
        • Bhojnagarwala
        • Judy R.
        • Jiang J.
        • De Jesus E.M.
        • et al.
        Adenoviral-based immunotherapy provides local disease control in an orthotopic murine model of esophageal cancer.
        J Immunother. 2014; 37: 283-292
        • Cruz C.R.
        • Hanley P.J.
        • Liu H.
        • Torrano V.
        • Lin Y.F.
        • Arce J.A.
        • et al.
        Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience.
        Cytotherapy. 2010; 12: 743-749
        • Bettinotti M.P.
        • Kim C.J.
        • Lee K.-H.
        • Roden M.
        • Cormier J.N.
        • Panelli M.
        • et al.
        Stringent allele/epitope requirements for MART-1/melan.
        A immunodominance: implications for peptide-based immunotherapy. 1998; 161: 877-889
        • Nettersheim D.
        • Arndt I.
        • Sharma R.
        • Riesenberg S.
        • Jostes S.
        • Schneider S.
        • et al.
        The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas.
        Br J Cancer. 2016; 115: 454
        • Matsushita M.
        • Yamazaki R.
        • Ikeda H.
        • Kawakami Y.
        Preferentially expressed antigen of melanoma (PRAME) in the development of diagnostic and therapeutic methods for hematological malignancies.
        Leuk Lymphoma. 2003; 44: 439-444
        • Yin B.
        PRAME: from diagnostic marker and tumor antigen to promising target of RNAi therapy in leukemic cells.
        Leuk Res. 2011; 35: 1159-1160
        • Shinozawa I.
        • Inokuchi K.
        • Wakabayashi I.
        • Dan K.
        Disturbed expression of the anti-apoptosis gene, survivin, and EPR-1 in hematological malignancies.
        Leuk Res. 2000; 24: 965-970
        • Ahmed M.B.
        • Shehata H.H.
        • Moussa M.
        • Ibrahim T.M.
        Prognostic significance of survivin and tumor necrosis factor-alpha in adult acute lymphoblastic leukemia.
        Clin Biochem. 2012; 45: 112-116
        • Chau Y.Y.
        • Hastie N.D.
        The role of Wt1 in regulating mesenchyme in cancer, development, and tissue homeostasis.
        Trends Genet. 2012; 28: 515-524
        • Thomas R.
        • Al-Khadairi G.
        • Roelands J.
        • Hendrickx W.
        • Dermime S.
        • Bedognetti D.
        • et al.
        NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives.
        Front Immunol. 2018; 9: 947
        • Smith H.A.
        • McNeel D.G.
        The SSX family of cancer-testis antigens as target proteins for tumor therapy.
        Clin Dev Immunol. 2010; 2010150591
        • Sang M.
        • Wang L.
        • Ding C.
        • Zhou X.
        • Wang B.
        • Wang L.
        • et al.
        Melanoma-associated antigen genes - an update.
        Cancer Lett. 2011; 302: 85-90
        • Countouriotis A.
        • Moore T.B.
        • Sakamoto K.M.
        Cell surface antigen and molecular targeting in the treatment of hematologic malignancies.
        Stem Cells. 2002; 20: 215-229
        • Van Driessche A.
        • Gao L.
        • Stauss H.J.
        • Ponsaerts
        • Van Bockstaele D.R.
        • Berneman Z.N.
        • et al.
        Antigen-specific cellular immunotherapy of leukemia.
        Leukemia. 2005; 19: 1863-1871
        • Ilyas S.
        • Yang J.C.
        Landscape of Tumor Antigens in T Cell Immunotherapy.
        J Immunol. 2015; 195: 5117-5122
        • Escors D.
        Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy.
        New J Sci. 2014; 2014
        • Blankenstein T.
        • Coulie P.G.
        • Gilboa E.
        • Jaffee E.M.
        The determinants of tumour immunogenicity.
        Nat Rev Cancer. 2012; 12: 307
        • Weber G.
        • Caruana I.
        • Rouce R.H.
        • Barrett A.J.
        • Gerdemann U.
        • Leen A.M.
        • et al.
        Generation of tumor antigen-specific T cell lines from pediatric patients with acute lymphoblastic leukemia—implications for immunotherapy.
        Clin Cancer Res. 2013; 19: 5079-5091
        • Chapuis A.G.
        • Desmarais C.
        • Emerson R.
        • Schmitt T.M.
        • Shibuya K.
        • Lai I.
        • et al.
        Tracking the Fate and Origin of Clinically Relevant Adoptively Transferred CD8(+) T Cells In Vivo.
        Sci Immunol. 2017; 2
        • Akiyama Y.
        • Maruyama K.
        • Tai S.
        • Takikawa M.
        • Ohshita C.
        • Yamamoto A.
        • et al.
        Novel approach to the characterization of melanoma associated-peptide-specific CTL lines from Japanese metastatic melanoma patients.
        Int J Oncol. 2008; 33: 433-441
        • Ayyoub M.
        • Hesdorffer C.S.
        • Montes M.
        • Merlo A.
        • Speiser D.
        • Rimoldi D.
        • et al.
        An immunodominant SSX-2-derived epitope recognized by CD4+ T cells in association with HLA-DR.
        J Clin Invest. 2004; 113: 1225-1233
      1. Leen A, Tzannou I, Bilgi M, Liu H, Vera JF, Gerdemann U, et al. Immunotherapy for lymphoma using T cells targeting multiple tumor associated antigens. Blood 2015; 126(23): 186.

      2. Sato Y, Nabeta Y, Tsukahara T, Hirohashi Y, Syunsui R, Maeda A, et al. Detection and Induction of CTLs Specific for SYT-SSX-Derived Peptides in HLA-A24+ Patients with Synovial Sarcoma. J Immunol 2002; 169(3):1611–18.

        • Hanley P.J.
        • Melenhorst J.J.
        • Nikiforow S.
        • Scheinberg
        • Blaney J.W.
        • Demmler-Harrison G.
        • et al.
        CMV-specific T cells generated from naive T cells recognize atypical epitopes and may be protective in vivo.
        Sci Transl Med. 2015; 7 (285ra63)
        • Naik S.
        • Nicholas S.K.
        • Martinez C.A.
        • Leen A.M.
        • Hanley P.J.
        • Gottschalk S.M.
        • et al.
        Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes.
        J Allergy Clin Immunol. 2016; 137: 1498-1505
        • Leen A.M.
        • Myers G.D.
        • Sili U.
        • Huls M.H.
        • Weiss H.
        • Leung K.S.
        • et al.
        Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals.
        Nat Med. 2006; 12: 1160-1166
      3. Withers B, Blyth E, Clancy L, Burgess J, Simms R, Micklethwaite K, et al. Third-Party Donor Virus-Specific T Cells Are Efficacious in the Treatment of Refractory Viral Infection Following Allogeneic HSCT, but May Not Persist Post-Infusion. Blood 2015; 126(23):623.

        • Barrett A.J.
        • Prockop S.
        • Bollard C.M.
        Virus-specific T cells: broadening applicability.
        Biol Blood Marrow Transplant. 2018; 24: 13-18
        • Miller H.K.
        • Hanley P.J.
        • Lang H.
        • Lazarski C.A.
        • Chorvinsky E.A.
        • McCormack S.
        • et al.
        Antiviral T cells for adenovirus in the pretransplant period: a bridge therapy for severe combined immunodeficiency.
        Biol Blood Marrow Transplant. 2018;
        • Chapuis A.G.
        • Thompson J.A.
        • Margolin K.A.
        • Rodmyre R.
        • Lai I.
        • Dowdy K.
        • et al.
        Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype.
        Proc Natl Acad Sci U S A. 2012; 109: 4592-4597
      4. Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med 2013; 5(174): 174ra27.

        • Jindal V.
        • Arora E.
        • Gupta S.
        Challenges and prospects of chimeric antigen receptor T cell therapy in solid tumors.
        Med Oncol. 2018; 35: 87
        • Chapuis A.G.
        • Ragnarsson G.B.
        • Nguyen H.N.
        • Chaney C.N.
        • Pufnock J.S.
        • Schmitt T.M.
        • et al.
        Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients.
        Sci Transl Med. 2013; 5 (174ra27)
      5. Guidance for FDA Reviewers and Sponsors: Content and Review of Chemistry, Manufacturing, and Control (CMC) Information for Human Somatic Cell Therapy Investigational New Drug Applications (INDs).
        U. S. Food and Drug Administration/Center for Biologics Evaluation and Research, 2008: 14
        • Nikfarjam L,
        Farzaneh P. Prevention and detection of Mycoplasma contamination in cell culture.
        Cell J. 2012; 13: 203-212
      6. Roche's rapid mycoplasma detection test MycoTOOL receives FDA acceptance for release testing of biopharmaceutical Roche product; 2012..
        (Available from)
      7. ATCC® Mycoplasma Testing Service. Available from: https://www.atcc.org/Services/Testing_Services/Mycoplasma_Testing.aspx.

        • Soncin S.
        • Lo Cicero V.
        • Astori G.
        • Soldati G.
        • Gola M.
        • Surder D.
        • et al.
        A practical approach for the validation of sterility, endotoxin and potency testing of bone marrow mononucleated cells used in cardiac regeneration in compliance with good manufacturing practice.
        J Transl Med. 2009; 7: 78
        • Gee A.P.
        • Sumstad D.
        • Stanson J.
        • Watson
        • Proctor J.
        • Kadidlo D.
        • et al.
        A multicenter comparison study between the Endosafe® PTS™ rapid-release testing system and traditional methods for detecting endotoxin in cell-therapy products.
        Cytotherapy. 2008; 10: 427-435
      8. Piccinini F, Tesei A, Arienti C, Bevilacqua A. Cell counting and viability assessment of 2D and 3D cell cultures: expected reliability of the trypan blue assay. Biol Proced Online 2017; 19(1):8.

        • Cadena-Herrera D.
        • Esparza-De Lara J.E.
        • Ramirez-Ibanez N.D.
        • Lopez-Morales C.A.
        • Perez N.O.
        • Flores-Ortiz L.F.
        • et al.
        Validation of three viable-cell counting methods: Manual, semi-automated, and automated.
        Biotechnol Rep (Amst). 2015; 7: 9-16
        • Kummrow A.
        • Frankowski M.
        • Bock N.
        • Werner C.
        • Dziekan T.
        • Neukammer J.
        Quantitative assessment of cell viability based on flow cytometry and microscopy.
        Cytometry A. 2013; 83: 197-204
        • Brunner K.T.
        • Mauel J.
        • Cerottini J.C.
        • Chapuis B.
        Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs.
        Immunology. 1968; 14: 181-196
        • Whiteside T.L.
        Monitoring of antigen-specific cytolytic T lymphocytes in cancer patients receiving immunotherapy.
        Clin Diagn Lab Immunol. 2000; 7: 327-332
        • Vatsan R.S.
        • Bross P.F.
        • Liu K.
        • Theoret M.
        • De Claro A.R.
        • Lu J.
        • et al.
        Regulation of immunotherapeutic products for cancer and FDA's role in product development and clinical evaluation.
        J Immunother Cancer. 2013; 1: 5
        • Southey F.
        CAR-T concerns for Novartis as Kymriah identified out of spec.
        ([cited 2018 July 25]; Available from)
        • Hanley P.J.
        • Cruz C.R.
        • Savoldo B.
        • Leen A.M.
        • Stanojevic M.
        • Khalil M.
        • et al.
        Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes.
        Blood. 2009; 114: 1958-1967
        • Hanley P.J.
        • Shaffer D.R.
        • Cruz C.R.
        • Ku S.
        • Tzou B.
        • Liu H.
        • et al.
        Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein-Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation.
        Cytotherapy. 2011; 13: 976-986
        • Wang M.
        • Tang S.T.
        • Stryhn A.
        • Justesen S.
        • Larsen M.V.
        • Dziegiel M.H.
        • et al.
        Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides.
        Immunology. 2011; 132: 482-491
        • Leen A.M.
        • Bollard C.M.
        • Mendizabal A.M.
        • Shpall E.J.
        • Szabolcs J.H.Antin
        • et al.
        Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation.
        Blood. 2013; 121: 5113-5123
        • Bassani-Sternberg M.
        • Coukos G.
        Mass spectrometry-based antigen discovery for cancer immunotherapy.
        Curr Opin Immunol. 2016; 41: 9-17
        • Rezvani K.
        • Yong A.S.
        • Tawab A.
        • Jafarpour B.
        • Eniafe R.
        • Mielke S.
        • et al.
        Ex vivo characterization of polyclonal memory CD8+ T-cell responses to PRAME-specific peptides in patients with acute lymphoblastic leukemia and acute and chronic myeloid leukemia.
        Blood. 2009; 113: 2245-2255
        • Falkenburg W.J.
        • Melenhorst J.J.
        • van de Meent M.
        • Kester M.G.
        • Hombrink
        • Heemskerk M.H.
        • et al.
        Allogeneic HLA-A*02-restricted WT1-specific T cells from mismatched donors are highly reactive but show off-target promiscuity.
        J Immunol. 2011; 187: 2824-2833
      9. Aarntzen EHJG, Srinivas M, Radu CG, Punt CJA, Boerman OC, Figdor CG, et al. In vivo imaging of therapy-induced anti-cancer immune responses in humans. Cell Mol Life Sci 2013; 70(13): 2237–57.

        • Wang X.M.
        Advances and issues in flow cytometric detection of immunophenotypic changes and genomic rearrangements in acute pediatric leukemia.
        Transl Pediatr. 2014; 3: 149-155
        • Inaba H.
        • Coustan-Smith E.
        • Cao X.
        • Pounds S.B.
        • Shurtleff S.A.
        • Wang K.Y.
        • et al.
        Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia.
        J Clin Oncol. 2012; 30: 3625-3632
        • Rezvani K.
        • Yong A.S.
        • Mielke S.
        • Jafarpour B.
        • Savani B.N.
        • Le R.Q.
        • et al.
        Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies.
        Haematologica. 2011; 96: 432-440
        • Rezvani K.
        • Yong A.S.
        • Mielke S.
        • Savani B.N.
        • Jafarpour B.
        • Eniafe R.
        • et al.
        Lymphodepletion is permissive to the development of spontaneous T-cell responses to the self-antigen PR1 early after allogeneic stem cell transplantation and in patients with acute myeloid leukemia undergoing WT1 peptide vaccination following chemotherapy.
        Cancer Immunol Immunother. 2012; 61: 1125-1136
        • Rezvani K.
        • Yong A.S.
        • Mielke S.
        • Savani B.N.
        • Musse L.
        • Superata J.
        • et al.
        Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies.
        Blood. 2008; 111: 236-242