Advertisement
Review Article| Volume 21, ISSUE 4, P393-415, April 2019

Recent progress on developing exogenous monocyte/macrophage-based therapies for inflammatory and degenerative diseases

  • Mable Wing Yan Chan
    Affiliations
    Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada

    Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
  • Sowmya Viswanathan
    Correspondence
    Correspondence: Sowmya Viswanathan, PhD, Assistant Professor, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Affiliate Scientist, Krembil Research Institute, University Health Network, 60 Leonard Avenue 5KD416-K1, Toronto, Ontario Ontario M5T 0S8, Canada.
    Affiliations
    Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada

    Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

    Cell Therapy Program, University Health Network, Toronto, Ontario, Canada

    Division of Hematology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
    Search for articles by this author
Published:March 12, 2019DOI:https://doi.org/10.1016/j.jcyt.2019.02.002

      Abstract

      Cell-based therapies are a rapidly developing area of regenerative medicine as dynamic treatments that execute therapeutic functions multimodally. Monocytes and macrophages, as innate immune cells that control inflammation and tissue repair, are increasing popular clinical candidates due to their spectrum of functionality. In this article, we review the role of monocytes and macrophages specifically in inflammatory and degenerative disease pathology and the evidence supporting the use of these cells as an effective therapeutic strategy. We compare current strategies of exogenously polarized monocyte/macrophage therapies regarding dosage, delivery and processing to identify outcomes, advances and challenges to their clinical use. Monocytes/macrophages hold the potential to be a promising therapeutic avenue but understanding and optimization of disease-specific efficacy is needed to accelerate their clinical use.

      Graphical abstract

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • June C.H.
        • O'Connor R.S.
        • Kawalekar O.U.
        • Ghassemi S.
        • Milone M.C.
        CAR T cell immunotherapy for human cancer.
        Science. 2018; 359: 1361-1365https://doi.org/10.1126/science.aar6711
        • Panés J.
        • García-Olmo D.
        • Van Assche G.
        • Colombel J.F.
        • Reinisch W.
        • Baumgart D.C.
        • et al.
        Long-term Efficacy and Safety of Stem Cell Therapy (Cx601) for Complex Perianal Fistulas in Patients With Crohn's Disease.
        Gastroenterology. 2018; 154 (e4): 1334-1342https://doi.org/10.1053/j.gastro.2017.12.020
        • Gupta P.K.
        • Krishna M.
        • Chullikana A.
        • Desai S.
        • Murugesan R.
        • Dutta S.
        • et al.
        Administration of Adult Human Bone Marrow-Derived, Cultured, Pooled, Allogeneic Mesenchymal Stromal Cells in Critical Limb Ischemia Due to Buerger's Disease: Phase II Study Report Suggests Clinical Efficacy.
        Stem Cells Transl Med. 2017; 6: 689-699https://doi.org/10.5966/sctm.2016-0237
        • Wehling P.
        • Moser C.
        • Frisbie D.
        • McIlwraith C.W.
        • Kawcak C.E.
        • Krauspe R.
        • et al.
        Autologous conditioned serum in the treatment of orthopedic diseases: the orthokine therapy.
        BioDrugs. 2007; 21: 323-332https://doi.org/10.2165/00063030-200721050-00004
        • O'Shaughnessey K.M.
        • Panitch A.
        • Woodell-May J.E.
        Blood-derived anti-inflammatory protein solution blocks the effect of IL-1β on human macrophages in vitro.
        Inflamm Res. 2011; 60: 929-936https://doi.org/10.1007/s00011-011-0353-2
        • Baltzer A.W.A.
        • Moser C.
        • Jansen S.A.
        • Krauspe R.
        Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis.
        Osteoarthr Cartil. 2009; 17: 152-160https://doi.org/10.1016/j.joca.2008.06.014
        • Kon E.
        • Engebretsen L.
        • Verdonk P.
        • Nehrer S.
        • Filardo G.
        Clinical Outcomes of Knee Osteoarthritis Treated With an Autologous Protein Solution Injection: A 1-Year Pilot Double-Blinded Randomized Controlled Trial.
        Am J Sports Med. 2018; 46: 171-180https://doi.org/10.1177/0363546517732734
        • Arango Duque G.
        • Descoteaux A.
        Macrophage Cytokines: Involvement in Immunity and Infectious Diseases.
        Front Immunol. 2014; 5: 491https://doi.org/10.3389/fimmu.2014.00491
        • Koh T.J.
        • DiPietro L.A.
        Inflammation and wound healing: the role of the macrophage.
        Expert Rev Mol Med. 2011; 13: e23https://doi.org/10.1017/S1462399411001943
        • Murray P.J.
        • Allen J.E.
        • Biswas S.K.
        • Fisher E.A.
        • Gilroy D.W.
        • Goerdt S.
        • et al.
        Macrophage activation and polarization: nomenclature and experimental guidelines.
        Immunity. 2014; 41: 14-20https://doi.org/10.1016/j.immuni.2014.06.008
        • Mosser D.M.
        • Edwards J.P.
        Exploring the full spectrum of macrophage activation.
        Nat Rev Immunol. 2008; 8: 958-969https://doi.org/10.1038/nri2448
        • Italiani P.
        • Boraschi D.
        From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation.
        Front Immunol. 2014; 5: 514https://doi.org/10.3389/fimmu.2014.00514
        • De Paoli F.
        • Staels B.
        • Chinetti-Gbaguidi G.
        Macrophage Phenotypes and Their Modulation in Atherosclerosis.
        Circ J. 2014; 78: 1775-1781https://doi.org/10.1253/circj.CJ-14-0621
        • Wynn T.A.
        • Vannella K.M.
        Macrophages in Tissue Repair, Regeneration, and Fibrosis.
        Immunity. 2016; 44: 450-462https://doi.org/10.1016/j.immuni.2016.02.015
        • Rőszer T.
        Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms.
        Mediators Inflamm. 2015; 2015816460https://doi.org/10.1155/2015/816460
        • Martinez F.O.
        • Gordon S.
        The M1 and M2 paradigm of macrophage activation: time for reassessment.
        F1000 Prime Rep. 2014; 6: 13https://doi.org/10.12703/P6-13
        • Cassetta L.
        • Kitamura T.
        Macrophage targeting: opening new possibilities for cancer immunotherapy.
        Immunology. 2018; 155: 285-293https://doi.org/10.1111/imm.12976
        • van Furth R.
        • Beekhuizen H.
        Monocytes. Encyclopedia of Immunology 2E.
        Elsevier, 1998: 1750-1754https://doi.org/10.1006/rwei.1999.0443
        • Swirski F.K.
        • Nahrendorf M.
        • Etzrodt M.
        • Wildgruber M.
        • Cortez-Retamozo V.
        • Panizzi P.
        • et al.
        Identification of splenic reservoir monocytes and their deployment to inflammatory sites.
        Science. 2009; 325: 612-616https://doi.org/10.1126/science.1175202
        • Ginhoux F.
        • Guilliams M.
        Tissue-Resident Macrophage Ontogeny and Homeostasis.
        Immunity. 2016; 44: 439-449https://doi.org/10.1016/j.immuni.2016.02.024
        • Fleming B.D.
        • Mosser D.M.
        Regulatory macrophages: setting the threshold for therapy.
        Eur J Immunol. 2011; 41: 2498-2502https://doi.org/10.1002/eji.201141717
        • Xue J.
        • Schmidt S.V.
        • Sander J.
        • Draffehn A.
        • Krebs W.
        • Quester I.
        • et al.
        Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation.
        Immunity. 2014; 40: 274-288https://doi.org/10.1016/j.immuni.2014.01.006
        • Stout R.D.
        • Suttles J.
        Functional plasticity of macrophages: reversible adaptation to changing microenvironments.
        J Leukoc Biol. 2004; 76: 509-513https://doi.org/10.1189/jlb.0504272
        • Wong K.L.
        • Yeap W.H.
        • Tai J.J.Y.
        • Ong S.M.
        • Dang T.M.
        • Wong S.C.
        The three human monocyte subsets: implications for health and disease.
        Immunol Res. 2012; 53: 41-57https://doi.org/10.1007/s12026-012-8297-3
        • Ziegler-Heitbrock L.
        Blood Monocytes and Their Subsets: Established Features and Open Questions.
        Front Immunol. 2015; 6: 423https://doi.org/10.3389/fimmu.2015.00423
        • Yang J.
        • Zhang L.
        • Yu C.
        • Yang X.-F.
        • Wang H.
        Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases.
        Biomark Res. 2014; 2: 1https://doi.org/10.1186/2050-7771-2-1
        • Rath M.
        • Müller I.
        • Kropf P.
        • Closs E.I.
        • Munder M.
        Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages.
        Front Immunol. 2014; 5: 532https://doi.org/10.3389/fimmu.2014.00532
        • Predonzani A.
        Spotlights on immunological effects of reactive nitrogen species: When inflammation says nitric oxide.
        World J Exp Med. 2015; 5: 64https://doi.org/10.5493/wjem.v5.i2.64
        • Riquelme P.
        • Tomiuk S.
        • Kammler A.
        • Fändrich F.
        • Schlitt H.J.
        • Geissler E.K.
        • et al.
        IFN-γ-induced iNOS Expression in Mouse Regulatory Macrophages Prolongs Allograft Survival in Fully Immunocompetent Recipients.
        Mol Ther. 2013; 21: 409-422https://doi.org/10.1038/mt.2012.168
        • Mia S.
        • Warnecke A.
        • Zhang X.-M.
        • Malmström V.
        • Harris R.A.
        An optimized protocol for human M2 macrophages using M-CSF and IL-4/IL-10/TGF-β yields a dominant immunosuppressive phenotype.
        Scand J Immunol. 2014; 79: 305-314https://doi.org/10.1111/sji.12162
        • Cao Q.
        • Wang Y.Y.
        • Zheng D.
        • Sun Y.
        • Wang Y.Y.
        • Lee V.W.S.
        • et al.
        IL-10/TGF-β–Modified Macrophages Induce Regulatory T Cells and Protect against Adriamycin Nephrosis.
        J Am Soc Nephrol. 2010; 21: 933-942https://doi.org/10.1681/ASN.2009060592
        • Wang Y.M.P.
        • Wang Y.M.P.
        • Zheng G.
        • Lee V.W.S.
        • Ouyang L.
        • Chang D.H.H.
        • et al.
        Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease.
        Kidney Int. 2007; 72: 290-299https://doi.org/10.1038/sj.ki.5002275
        • Bouchlaka M.N.
        • Moffitt A.B.
        • Kim J.
        • Kink J.A.
        • Bloom D.D.
        • Love C.
        • et al.
        Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models.
        Biol Blood Marrow Transplant. 2017; 23: 897-905https://doi.org/10.1016/j.bbmt.2017.02.018
        • Hesketh M.
        • Sahin K.B.
        • West Z.E.
        • Murray R.Z.
        Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.
        Int J Mol Sci. 2017; 18: 1545https://doi.org/10.3390/ijms18071545
        • Wu D.
        • Molofsky A.B.
        • Liang H.-E.
        • Ricardo-Gonzalez R.R.
        • Jouihan H.A.
        • Bando J.K.
        • et al.
        Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis.
        Science. 2011; 332: 243-247https://doi.org/10.1126/science.1201475
        • Recalcati S.
        • Locati M.
        • Marini A.
        • Santambrogio P.
        • Zaninotto F.
        • De Pizzol M.
        • et al.
        Differential regulation of iron homeostasis during human macrophage polarized activation.
        Eur J Immunol. 2010; 40: 824-835https://doi.org/10.1002/eji.200939889
        • Minutti C.M.
        • Knipper J.A.
        • Allen J.E.
        • Zaiss D.M.W.
        Tissue-specific contribution of macrophages to wound healing.
        Semin Cell Dev Biol. 2017; 61: 3-11https://doi.org/10.1016/j.semcdb.2016.08.006
        • Lucas T.
        • Waisman A.
        • Ranjan R.
        • Roes J.
        • Krieg T.
        • Müller W.
        • et al.
        Differential roles of macrophages in diverse phases of skin repair.
        J Immunol. 2010; 184: 3964-3977https://doi.org/10.4049/jimmunol.0903356
        • Jetten N.
        • Roumans N.
        • Gijbels M.J.
        • Romano A.
        • Post M.J.
        • de Winther M.P.J.
        • et al.
        Wound Administration of M2-Polarized Macrophages Does Not Improve Murine Cutaneous Healing Responses.
        PLoS One. 2014; 9e102994https://doi.org/10.1371/journal.pone.0102994
        • Dreymueller D.
        • Denecke B.
        • Ludwig A.
        • Jahnen-Dechent W.
        Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing.
        Wound Repair Regen. 2013; 21: 44-54https://doi.org/10.1111/j.1524-475X.2012.00858.x
        • Gu X.
        • Shen S.
        • Huang C.
        • Liu Y.
        • Chen Y.
        • Luo L.
        • et al.
        Effect of activated autologous monocytes/macrophages on wound healing in a rodent model of experimental diabetes.
        Diabetes Res Clin Pract. 2013; 102: 53-59https://doi.org/10.1016/j.diabres.2013.08.004
        • Frenkel O.
        • Shani E.
        • Ben-Bassat I.
        • Brok-Simoni F.
        • Shinar E.
        • Danon D.
        Activation of human monocytes/macrophages by hypo-osmotic shock.
        Clin Exp Immunol. 2001; 124: 103-109https://doi.org/10.1046/j.1365-2249.2001.01496.x
        • Danon D.
        • Madjar J.
        • Edinov E.
        • Knyszynski A.
        • Brill S.
        • Diamantshtein L.
        • et al.
        Treatment of human ulcers by application of macrophages prepared from a blood unit.
        Exp Gerontol. 1997; 32: 633-641https://doi.org/10.1016/S0531-5565(97)00094-6
        • Zuloff-Shani A.
        • Adunsky A.
        • Even-Zahav A.
        • Semo H.
        • Orenstein A.
        • Tamir J.
        • et al.
        Hard to heal pressure ulcers (stage III–IV): Efficacy of injected activated macrophage suspension (AMS) as compared with standard of care (SOC) treatment controlled trial.
        Arch Gerontol Geriatr. 2010; 51: 268-272https://doi.org/10.1016/j.archger.2009.11.015
        • Orenstein A.
        • Kachel E.
        • Zuloff-Shani A.
        • Paz Y.
        • Sarig O.
        • Haik J.
        • et al.
        Treatment of deep sternal wound infections post-open heart surgery by application of activated macrophage suspension.
        Wound Repair Regen. 2005; 13: 237-242https://doi.org/10.1111/j.1067-1927.2005.130304.x
        • Mokarram N.
        • Merchant A.
        • Mukhatyar V.
        • Patel G.
        • Bellamkonda R.V.
        Effect of modulating macrophage phenotype on peripheral nerve repair.
        Biomaterials. 2012; 33: 8793-8801https://doi.org/10.1016/j.biomaterials.2012.08.050
        • Popovich P.G.
        • Hickey W.F.
        Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord.
        J Neuropathol Exp Neurol. 2001; 60: 676-685
        • Pineau I.
        • Lacroix S.
        Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved.
        J Comp Neurol. 2007; 500: 267-285https://doi.org/10.1002/cne.21149
        • David S.
        • Kroner A.
        Repertoire of microglial and macrophage responses after spinal cord injury.
        Nat Rev Neurosci. 2011; 12: 388-399https://doi.org/10.1038/nrn3053
        • Greenhalgh A.D.
        • David S.
        Differences in the Phagocytic Response of Microglia and Peripheral Macrophages after Spinal Cord Injury and Its Effects on Cell Death.
        J Neurosci. 2014; 34: 6316-6322https://doi.org/10.1523/JNEUROSCI.4912-13.2014
        • Kigerl K.A.
        • Gensel J.C.
        • Ankeny D.P.
        • Alexander J.K.
        • Donnelly D.J.
        • Popovich P.G.
        Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord.
        J Neurosci. 2009; 29: 13435-13444https://doi.org/10.1523/JNEUROSCI.3257-09.2009
        • Shechter R.
        • Miller O.
        • Yovel G.
        • Rosenzweig N.
        • London A.
        • Ruckh J.
        • et al.
        Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus.
        Immunity. 2013; 38: 555-569https://doi.org/10.1016/j.immuni.2013.02.012
        • Zhu Y.
        • Lyapichev K.
        • Lee D.H.
        • Motti D.
        • Ferraro N.M.
        • Zhang Y.
        • et al.
        Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury.
        J Neurosci. 2017; 37: 2362-2376https://doi.org/10.1523/JNEUROSCI.2751-16.2017
        • Donnelly D.J.
        • Longbrake E.E.
        • Shawler T.M.
        • Kigerl K.A.
        • Lai W.
        • Tovar C.A.
        • et al.
        Deficient CX3CR1 Signaling Promotes Recovery after Mouse Spinal Cord Injury by Limiting the Recruitment and Activation of Ly6Clo/iNOS+ Macrophages.
        J Neurosci. 2011; 31: 9910-9922https://doi.org/10.1523/JNEUROSCI.2114-11.2011
        • Zhang B.
        • Bailey W.M.
        • Kopper T.J.
        • Orr M.B.
        • Feola D.J.
        • Gensel J.C.
        Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury.
        J Neuroinflammation. 2015; 12: 218https://doi.org/10.1186/s12974-015-0440-3
        • Gensel J.C.
        • Kopper T.J.
        • Zhang B.
        • Orr M.B.
        • Bailey W.M.
        Predictive screening of M1 and M2 macrophages reveals the immunomodulatory effectiveness of post spinal cord injury azithromycin treatment.
        Sci Rep. 2017; 7: 40144https://doi.org/10.1038/srep40144
        • Lammertse D.P.
        • Jones L.A.T.
        • Charlifue S.B.
        • Kirshblum S.C.
        • Apple D.F.
        • Ragnarsson K.T.
        • et al.
        Autologous incubated macrophage therapy in acute, complete spinal cord injury: results of the phase 2 randomized controlled multicenter trial.
        Spinal Cord. 2012; 50: 661-671https://doi.org/10.1038/sc.2012.39
        • Bomstein Y.
        • Marder J.B.
        • Vitner K.
        • Smirnov I.
        • Lisaey G.
        • Butovsky O.
        • et al.
        Features of skin-coincubated macrophages that promote recovery from spinal cord injury.
        J Neuroimmunol. 2003; 142 (doi:14512160): 10-16
        • Denes A.
        • Vidyasagar R.
        • Feng J.
        • Narvainen J.
        • McColl B.W.
        • Kauppinen R.A.
        • et al.
        Proliferating resident microglia after focal cerebral ischaemia in mice.
        J Cereb Blood Flow Metab. 2007; 27: 1941-1953https://doi.org/10.1038/sj.jcbfm.9600495
        • Ritzel R.M.
        • Patel A.R.
        • Grenier J.M.
        • Crapser J.
        • Verma R.
        • Jellison E.R.
        • et al.
        Functional differences between microglia and monocytes after ischemic stroke.
        J Neuroinflammation. 2015; 12: 106https://doi.org/10.1186/s12974-015-0329-1
        • Amantea D.
        • Certo M.
        • Petrelli F.
        • Tassorelli C.
        • Micieli G.
        • Corasaniti M.T.
        • et al.
        Azithromycin protects mice against ischemic stroke injury by promoting macrophage transition towards M2 phenotype.
        Exp Neurol. 2016; 275: 116-125https://doi.org/10.1016/j.expneurol.2015.10.012
        • Kim E.
        • Yang J.
        • Beltran C.D.
        • Cho S.
        Role of spleen-derived monocytes/macrophages in acute ischemic brain injury.
        J Cereb Blood Flow Metab. 2014; 34: 1411-1419https://doi.org/10.1038/jcbfm.2014.101
        • Wattananit S.
        • Tornero D.
        • Graubardt N.
        • Memanishvili T.
        • Monni E.
        • Tatarishvili J.
        • et al.
        Monocyte-Derived Macrophages Contribute to Spontaneous Long-Term Functional Recovery after Stroke in Mice.
        J Neurosci. 2016; 36: 4182-4195https://doi.org/10.1523/JNEUROSCI.4317-15.2016
        • Perego C.
        • Fumagalli S.
        • De Simoni M.-G.
        Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice.
        J Neuroinflammation. 2011; 8: 174https://doi.org/10.1186/1742-2094-8-174
        • Hu X.
        • Li P.
        • Guo Y.
        • Wang H.
        • Leak R.K.
        • Chen S.
        • et al.
        Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia.
        Stroke. 2012; 43: 3063-3070https://doi.org/10.1161/STROKEAHA.112.659656
        • Chu H.X.
        • Broughton B.R.S.
        • Kim H.A.
        • Lee S.
        • Drummond G.R.
        • Sobey C.G.
        Evidence That Ly6C(hi) Monocytes are Protective in Acute Ischemic Stroke by Promoting M2 Macrophage Polarization.
        Stroke. 2015; 46: 1929-1937https://doi.org/10.1161/STROKEAHA.115.009426
        • Chernykh E.R.
        • Shevela E.Y.
        • Starostina N.M.
        • Morozov S.A.
        • Davydova M.N.
        • Menyaeva E.V.
        • et al.
        Safety and Therapeutic Potential of M2 Macrophages in Stroke Treatment.
        Cell Transplant. 2016; 25: 1461-1471https://doi.org/10.3727/096368915X690279
        • Fleetwood A.J.
        • Lawrence T.
        • Hamilton J.A.
        • Cook A.D.
        Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation.
        J Immunol. 2007; 178 (doi:17404308): 5245-5252
        • Chernykh E.R.
        • Shevela E.Y.
        • Sakhno L.V.
        • Tikhonova Y.L.
        • Petrovsky A.A.
        The generation and properties of human M2-like macrophages: potential candidates for CNS repair?.
        Cell Ther Transpl. 2010; 2: 1-8
        • Sakhno L.V.
        • Shevela E.Y.
        • Tikhonova M.A.
        • Ostanin A.A.
        • Chernykh E.R.
        The Phenotypic and Functional Features of Human M2 Macrophages Generated Under Low Serum Conditions.
        Scand J Immunol. 2016; 83: 151-159https://doi.org/10.1111/sji.12401
        • Hossne N.A.
        • Invitti A.L.
        • Buffolo E.
        • Azevedo S.
        • Rodrigues de Oliveira J.S.
        • Stolf N.G.
        • et al.
        Refractory angina cell therapy (ReACT) involving autologous bone marrow cells in patients without left ventricular dysfunction: a possible role for monocytes.
        Cell Transplant. 2009; 18: 1299-1310https://doi.org/10.3727/096368909X484671
        • Rubio-Navarro A.
        • Amaro Villalobos J.M.
        • Lindholt J.S.
        • Buendía I.
        • Egido J.
        • Blanco-Colio L.M.
        • et al.
        Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm.
        Int J Cardiol. 2015; 201: 66-78https://doi.org/10.1016/j.ijcard.2015.08.053
        • Stöger J.L.
        • Gijbels M.J.J.
        • van der Velden S.
        • Manca M.
        • van der Loos C.M.
        • Biessen E.A.L.
        • et al.
        Distribution of macrophage polarization markers in human atherosclerosis.
        Atherosclerosis. 2012; 225: 461-468https://doi.org/10.1016/j.atherosclerosis.2012.09.013
        • Fenyo I.M.
        • Gafencu A.V.
        The involvement of the monocytes/macrophages in chronic inflammation associated with atherosclerosis.
        Immunobiology. 2013; 218: 1376-1384https://doi.org/10.1016/j.imbio.2013.06.005
        • Koenen R.R.
        • Weber C.
        Therapeutic targeting of chemokine interactions in atherosclerosis.
        Nat Rev Drug Discov. 2010; 9: 141-153https://doi.org/10.1038/nrd3048
      1. Zuccarella-Hackl C, von Känel R, Thomas L, Hauser M, Kuebler U, Widmer HR, et al. Macrophage Superoxide Anion Production in Essential Hypertension: Associations With Biological and Psychological Cardiovascular Risk Factors. Psychosom Med 2016;78:750–7. https://doi.org/10.1097/PSY.0000000000000324.

        • Moore K.J.
        • Sheedy F.J.
        • Fisher E.A.
        Macrophages in atherosclerosis: a dynamic balance.
        Nat Rev Immunol. 2013; 13: 709-721https://doi.org/10.1038/nri3520
        • Llodrá J.
        • Angeli V.
        • Liu J.
        • Trogan E.
        • Fisher E.A.
        • Randolph G.J.
        Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques.
        Proc Natl Acad Sci U S A. 2004; 101: 11779-11784https://doi.org/10.1073/pnas.0403259101
        • Powell R.J.
        • Marston W.A.
        • Berceli S.A.
        • Guzman R.
        • Henry T.D.
        • Longcore A.T.
        • et al.
        Cellular therapy with Ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial.
        Mol Ther. 2012; 20: 1280-1286https://doi.org/10.1038/mt.2012.52
        • Heidt T.
        • Courties G.
        • Dutta P.
        • Sager H.B.
        • Sebas M.
        • Iwamoto Y.
        • et al.
        Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction.
        Circ Res. 2014; 115: 284-295https://doi.org/10.1161/CIRCRESAHA.115.303567
        • Epelman S.
        • Lavine K.J.
        • Beaudin A.E.
        • Sojka D.K.
        • Carrero J.A.
        • Calderon B.
        • et al.
        Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation.
        Immunity. 2014; 40: 91-104https://doi.org/10.1016/j.immuni.2013.11.019
        • Nahrendorf M.
        • Swirski F.K.
        • Aikawa E.
        • Stangenberg L.
        • Wurdinger T.
        • Figueiredo J.-L.
        • et al.
        The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions.
        J Exp Med. 2007; 204: 3037-3047https://doi.org/10.1084/jem.20070885
        • Gombozhapova A.
        • Rogovskaya Y.
        • Shurupov V.
        • Rebenkova M.
        • Kzhyshkowska J.
        • Popov S.V.
        • et al.
        Macrophage activation and polarization in post-infarction cardiac remodeling.
        J Biomed Sci. 2017; 24: 13https://doi.org/10.1186/s12929-017-0322-3
        • Lavine K.J.
        • Epelman S.
        • Uchida K.
        • Weber K.J.
        • Nichols C.G.
        • Schilling J.D.
        • et al.
        Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart.
        Proc Natl Acad Sci U S A. 2014; 111: 16029-16034https://doi.org/10.1073/pnas.1406508111
        • Shintani Y.
        • Ito T.
        • Fields L.
        • Shiraishi M.
        • Ichihara Y.
        • Sato N.
        • et al.
        IL-4 as a Repurposed Biological Drug for Myocardial Infarction through Augmentation of Reparative Cardiac Macrophages: Proof-of-Concept Data in Mice.
        Sci Rep. 2017; 7: 6877https://doi.org/10.1038/s41598-017-07328-z
        • Ledford K.J.
        • Zeigler F.
        • Bartel R.L.
        Ixmyelocel-T, an expanded multicellular therapy, contains a unique population of M2-like macrophages.
        Stem Cell Res Ther. 2013; 4: 134https://doi.org/10.1186/scrt345
        • Patel A.N.
        • Henry T.D.
        • Quyyumi A.A.
        • Schaer G.L.
        • Anderson R.D.
        • Toma C.
        • et al.
        Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial.
        Lancet. 2016; 387: 2412-2421https://doi.org/10.1016/S0140-6736(16)30137-4
        • Henry T.D.
        • Traverse J.H.
        • Hammon B.L.
        • East C.A.
        • Bruckner B.
        • Remmers A.E.
        • et al.
        Safety and efficacy of ixmyelocel-T: an expanded, autologous multi-cellular therapy, in dilated cardiomyopathy.
        Circ Res. 2014; 115: 730-737https://doi.org/10.1161/CIRCRESAHA.115.304554
        • MacDonald K.P.A.
        • Hill G.R.
        • Blazar B.R.
        Chronic graft-versus-host disease: biological insights from preclinical and clinical studies.
        Blood. 2017; 129: 13-21https://doi.org/10.1182/blood-2016-06-686618
        • Calderon B.
        • Suri A.
        • Unanue E.R.
        In CD4+ T-Cell-Induced Diabetes, Macrophages Are the Final Effector Cells that Mediate Islet β-Cell Killing.
        Am J Pathol. 2006; 169: 2137-2147https://doi.org/10.2353/ajpath.2006.060539
        • Martin A.P.
        • Rankin S.
        • Pitchford S.
        • Charo I.F.
        • Furtado G.C.
        • Lira S.A.
        Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes.
        Diabetes. 2008; 57: 3025-3033https://doi.org/10.2337/db08-0625
        • Uno S.
        • Imagawa A.
        • Okita K.
        • Sayama K.
        • Moriwaki M.
        • Iwahashi H.
        • et al.
        Macrophages and dendritic cells infiltrating islets with or without beta cells produce tumour necrosis factor-alpha in patients with recent-onset type 1 diabetes.
        Diabetologia. 2007; 50: 596-601https://doi.org/10.1007/s00125-006-0569-9
        • Bradshaw E.M.
        • Raddassi K.
        • Elyaman W.
        • Orban T.
        • Gottlieb P.A.
        • Kent S.C.
        • et al.
        Monocytes from Patients with Type 1 Diabetes Spontaneously Secrete Proinflammatory Cytokines Inducing Th17 Cells.
        J Immunol. 2009; 183: 4432-4439https://doi.org/10.4049/jimmunol.0900576
        • Fadini G.P.
        • Bonora B.M.
        • Cappellari R.
        • Menegazzo L.
        • Vedovato M.
        • Iori E.
        • et al.
        Acute Effects of Linagliptin on Progenitor Cells, Monocyte Phenotypes, and Soluble Mediators in Type 2 Diabetes.
        J Clin Endocrinol Metab. 2016; 101: 748-756https://doi.org/10.1210/jc.2015-3716
        • Fadini G.P.
        • Bonora B.M.
        • Albiero M.
        • Zaninotto M.
        • Plebani M.
        • Avogaro A.
        DPP-4 inhibition has no acute effect on BNP and its N-terminal pro-hormone measured by commercial immune-assays. A randomized cross-over trial in patients with type 2 diabetes.
        Cardiovasc Diabetol. 2017; 16: 22https://doi.org/10.1186/s12933-017-0507-9
        • Zeyda M.
        • Farmer D.
        • Todoric J.
        • Aszmann O.
        • Speiser M.
        • Györi G.
        • et al.
        Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production.
        Int J Obes (Lond). 2007; 31: 1420-1428https://doi.org/10.1038/sj.ijo.0803632
        • Larsen C.M.
        • Faulenbach M.
        • Vaag A.
        • Vølund A.
        • Ehses J.A.
        • Seifert B.
        • et al.
        Interleukin-1-receptor antagonist in type 2 diabetes mellitus.
        N Engl J Med. 2007; 356: 1517-1526https://doi.org/10.1056/NEJMoa065213
        • Cavelti-Weder C.
        • Babians-Brunner A.
        • Keller C.
        • Stahel M.A.
        • Kurz-Levin M.
        • Zayed H.
        • et al.
        Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes.
        Diabetes Care. 2012; 35: 1654-1662https://doi.org/10.2337/dc11-2219
        • Salehi S.
        • Reed E.F.
        The divergent roles of macrophages in solid organ transplantation.
        Curr Opin Organ Transplant. 2015; 20 (https://doi.org/https:10.1097/MOT.0000000000000209): 446-453
        • Nayak D.K.
        • Zhou F.
        • Xu M.
        • Huang J.
        • Tsuji M.
        • Hachem R.
        • et al.
        Long-Term Persistence of Donor Alveolar Macrophages in Human Lung Transplant Recipients That Influences Donor-Specific Immune Responses.
        Am J Transplant. 2016; 16: 2300-2311https://doi.org/10.1111/ajt.13819
        • Berry M.R.
        • Mathews R.J.
        • Ferdinand J.R.
        • Jing C.
        • Loudon K.W.
        • Wlodek E.
        • et al.
        Renal Sodium Gradient Orchestrates a Dynamic Antibacterial Defense Zone.
        Cell. 2017; 170 (e19): 860-874https://doi.org/10.1016/j.cell.2017.07.022
        • Stamatiades E.G.
        • Tremblay M.-E.
        • Bohm M.
        • Crozet L.
        • Bisht K.
        • Kao D.
        • et al.
        Immune Monitoring of Trans-endothelial Transport by Kidney-Resident Macrophages.
        Cell. 2016; 166: 991-1003https://doi.org/10.1016/j.cell.2016.06.058
        • Hutchinson J.A.
        • Riquelme P.
        • Sawitzki B.
        • Tomiuk S.
        • Miqueu P.
        • Zuhayra M.
        • et al.
        Cutting Edge: Immunological Consequences and Trafficking of Human Regulatory Macrophages Administered to Renal Transplant Recipients.
        J Immunol. 2011; 187: 2072-2078https://doi.org/10.4049/jimmunol.1100762
        • Hutchinson J.A.
        • Ahrens N.
        • Riquelme P.
        • Walter L.
        • Gruber M.
        • Böger C.A.
        • et al.
        Clinical management of patients receiving cell-based immunoregulatory therapy.
        Transfusion. 2014; 54: 2336-2343https://doi.org/10.1111/trf.12641
        • Riquelme P.
        • Geissler E.K.
        • Hutchinson J.A.
        Alternative approaches to myeloid suppressor cell therapy in transplantation: comparing regulatory macrophages to tolerogenic DCs and MDSCs.
        Transplant Res. 2012; 1: 17https://doi.org/10.1186/2047-1440-1-17
        • Riquelme P.
        • Haarer J.
        • Kammler A.
        • Walter L.
        • Tomiuk S.
        • Ahrens N.
        • et al.
        TIGIT+ iTregs elicited by human regulatory macrophages control T cell immunity.
        Nat Commun. 2018; 9: 2858https://doi.org/10.1038/s41467-018-05167-8
        • Hutchinson J.A.
        • Riquelme P.
        • Brem-Exner B.G.
        • Schulze M.
        • Matthi M.
        • Renders L.
        • et al.
        Transplant acceptance-inducing cells as an immune-conditioning therapy in renal transplantation.
        Transpl Int. 2008; 21: 728-741https://doi.org/10.1111/j.1432-2277.2008.00680.x
        • Hutchinson J.A.
        • Brem-Exner B.G.
        • Riquelme P.
        • Roelen D.
        • Schulze M.
        • Ivens K.
        • et al.
        A cell-based approach to the minimization of immunosuppression in renal transplantation.
        Transpl Int. 2008; 21: 742-754https://doi.org/10.1111/j.1432-2277.2008.00692.x
        • Possamai L.A.
        • Thursz M.R.
        • Wendon J.A.
        • Antoniades C.G.
        Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure.
        J Hepatol. 2014; 61: 439-445https://doi.org/10.1016/j.jhep.2014.03.031
        • Antoniades C.G.
        • Quaglia A.
        • Taams L.S.
        • Mitry R.R.
        • Hussain M.
        • Abeles R.
        • et al.
        Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans.
        Hepatology. 2012; 56: 735-746https://doi.org/10.1002/hep.25657
        • Zigmond E.
        • Samia-Grinberg S.
        • Pasmanik-Chor M.
        • Brazowski E.
        • Shibolet O.
        • Halpern Z.
        • et al.
        Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury.
        J Immunol. 2014; 193: 344-353https://doi.org/10.4049/jimmunol.1400574
        • You Q.
        • Holt M.
        • Yin H.
        • Li G.
        • Hu C.-J.
        • Ju C.
        Role of hepatic resident and infiltrating macrophages in liver repair after acute injury.
        Biochem Pharmacol. 2013; 86: 836-843https://doi.org/10.1016/j.bcp.2013.07.006
        • Ramachandran P.
        • Pellicoro A.
        • Vernon M.A.
        • Boulter L.
        • Aucott R.L.
        • Ali A.
        • et al.
        Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis.
        Proc Natl Acad Sci U S A. 2012; 109: E3186-E3195https://doi.org/10.1073/pnas.1119964109
        • Karlmark K.R.
        • Zimmermann H.W.
        • Roderburg C.
        • Gassler N.
        • Wasmuth H.E.
        • Luedde T.
        • et al.
        The fractalkine receptor CX₃CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes.
        Hepatology. 2010; 52: 1769-1782https://doi.org/10.1002/hep.23894
        • Fraser A.R.
        • Pass C.
        • Burgoyne P.
        • Atkinson A.
        • Bailey L.
        • Laurie A.
        • et al.
        Development, functional characterization and validation of methodology for GMP-compliant manufacture of phagocytic macrophages: A novel cellular therapeutic for liver cirrhosis.
        Cytotherapy. 2017; 9: 1113-1124https://doi.org/10.1016/j.jcyt.2017.05.009
        • Moore J.K.
        • Mackinnon A.C.
        • Wojtacha D.
        • Pope C.
        • Fraser A.R.
        • Burgoyne P.
        • et al.
        Phenotypic and functional characterization of macrophages with therapeutic potential generated from human cirrhotic monocytes in a cohort study.
        Cytotherapy. 2015; 17: 1604-1616https://doi.org/10.1016/j.jcyt.2015.07.016
        • Friedman S.
        • Sanyal A.
        • Goodman Z.
        • Lefebvre E.
        • Gottwald M.
        • Fischer L.
        • et al.
        Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design.
        Contemp Clin Trials. 2016; 47: 356-365https://doi.org/10.1016/j.cct.2016.02.012
        • Smith M.D.
        The Normal Synovium.
        Open Rheumatol J. 2011; 5: 100-106https://doi.org/10.2174/1874312901105010100
        • Udalova I.A.
        • Mantovani A.
        • Feldmann M.
        Macrophage heterogeneity in the context of rheumatoid arthritis.
        Nat Rev Rheumatol. 2016; 12: 472-485https://doi.org/10.1038/nrrheum.2016.91
        • Kennedy A.
        • Fearon U.
        • Veale D.J.
        • Godson C.
        Macrophages in synovial inflammation.
        Front Immunol. 2011; 2: 52https://doi.org/10.3389/fimmu.2011.00052
        • Mohamed-Ali H.
        Influence of synovial cells on cartilage in vitro: induction of breakdown and inhibition of synthesis.
        Virchows Arch B Cell Pathol Incl Mol Pathol. 1992; 62: 227-236
        • Feldmann M.
        • Maini R.N.
        Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned?.
        Annu Rev Immunol. 2001; 19: 163-196https://doi.org/10.1146/annurev.immunol.19.1.163
        • Henderson B.
        • Pettipher E.R.
        Arthritogenic actions of recombinant IL-1 and tumour necrosis factor alpha in the rabbit: evidence for synergistic interactions between cytokines in vivo.
        Clin Exp Immunol. 1989; 75: 306-310
        • Avci A.B.
        • Feist E.
        • Burmester G.-R.
        A Promising Target in Rheumatoid Arthritis Treatment: Granulocyte-Macrophage Colony-Stimulating Factor.
        Curr Treat Options Rheumatol. 2015; 1: 320-333https://doi.org/10.1007/s40674-015-0031-6
        • Cook A.D.
        • Hamilton J.A.
        Investigational therapies targeting the granulocyte macrophage colony-stimulating factor receptor-α in rheumatoid arthritis: focus on mavrilimumab.
        Ther Adv Musculoskelet Dis. 2018; 10: 29-38https://doi.org/10.1177/1759720X17752036
        • Benito M.J.
        • Veale D.J.
        • FitzGerald O.
        • van den Berg W.B.
        • Bresnihan B.
        Synovial tissue inflammation in early and late osteoarthritis.
        Ann Rheum Dis. 2005; 64: 1263-1267https://doi.org/10.1136/ard.2004.025270
        • Bondeson J.
        • Blom A.B.
        • Wainwright S.
        • Hughes C.
        • Caterson B.
        • van den Berg W.B.
        The role of synovial macrophages and macrophage-produced mediators in driving inflammatory and destructive responses in osteoarthritis.
        Arthritis Rheum. 2010; 62: 647-657https://doi.org/10.1002/art.27290
        • Orlowsky E.W.
        • Kraus V.B.
        The role of innate immunity in osteoarthritis: when our first line of defense goes on the offensive.
        J Rheumatol. 2015; 42: 363-371https://doi.org/10.3899/jrheum.140382
        • Gómez-Aristizábal A.
        • Gandhi R.
        • Mahomed N.N.
        • Marshall K.W.
        • Viswanathan S.
        Synovial fluid monocyte/macrophage subsets and their correlation to patient-reported outcomes in osteoarthritic patients: a cohort study.
        Arthritis Res Ther. 2019; 21: 26https://doi.org/10.1186/s13075-018-1798-2
        • Choi K.
        • Lee H.
        • Kim D.
        • Lee H.
        • Kim M.
        • Lim C.-L.
        • et al.
        InvossaTM (TISSUEGENE-C) induces an anti-inflammatory environment in the arthritic knee joints via macrophage polarization.
        Osteoarthr Cartil. 2017; 25: S157https://doi.org/10.1016/j.joca.2017.02.267
        • Cho J.
        • Kim T.
        • Park Y.
        • Shin J.
        • Kang S.
        • Lee B.
        InvossaTM(Tissuegene-C) in patients with osteoarthritis: A phase III trial.
        Osteoarthr Cartil. 2016; 24: S190https://doi.org/10.1016/j.joca.2016.01.374
        • Andreesen R.
        • Hennemann B.
        • Krause S.W.
        Adoptive immunotherapy of cancer using monocyte-derived macrophages: rationale, current status, and perspectives.
        J Leukoc Biol. 1998; 64: 419-426https://doi.org/10.1002/jlb.64.4.419
        • Korchinski D.J.
        • Taha M.
        • Yang R.
        • Nathoo N.
        • Dunn J.F.
        Iron Oxide as an MRI Contrast Agent for Cell Tracking: Supplementary Issue.
        Magn Reson Insights. 2015; (MRI.S23557): 8s1https://doi.org/10.4137/MRI.S23557
        • Kraus V.B.
        • McDaniel G.
        • Huebner J.L.
        • Stabler T.V.
        • Pieper C.F.
        • Shipes S.W.
        • et al.
        Direct in vivo evidence of activated macrophages in human osteoarthritis.
        Osteoarthr Cartil. 2016; 24: 1613-1621https://doi.org/10.1016/j.joca.2016.04.010
        • Guglielmetti C.
        • Najac C.
        • Didonna A.
        • Van der Linden A.
        • Ronen S.M.
        • Chaumeil M.M.
        Hyperpolarized 13 C MR metabolic imaging can detect neuroinflammation in vivo in a multiple sclerosis murine model.
        Proc Natl Acad Sci. 2017; 114: E6982-E6991https://doi.org/10.1073/pnas.1613345114
        • Najac C.
        • Chaumeil M.M.
        • Kohanbash G.
        • Guglielmetti C.
        • Gordon J.W.
        • Okada H.
        • et al.
        Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine.
        Sci Rep. 2016; 6: 31397https://doi.org/10.1038/srep31397
        • Curti A.
        • Isidori A.
        • Ferri E.
        • Terragna C.
        • Neyroz P.
        • Cellini C.
        • et al.
        Generation of dendritic cells from positively selected CD14+ monocytes for anti-tumor immunotherapy.
        Leuk Lymphoma. 2004; 45: 1419-1428
        • van de Laar L.
        • Saelens W.
        • De Prijck S.
        • Martens L.
        • Scott C.L.
        • Van Isterdael G.
        • et al.
        Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages.
        Immunity. 2016; 44: 755-768https://doi.org/10.1016/j.immuni.2016.02.017
        • Aziz A.
        • Soucie E.
        • Sarrazin S.
        • Sieweke M.H.
        MafB/c-Maf Deficiency Enables Self-Renewal of Differentiated Functional Macrophages.
        Science. 2009; 326: 867-871https://doi.org/10.1126/science.1176056
        • Mucci A.
        • Lopez-Rodriguez E.
        • Hetzel M.
        • Liu S.
        • Suzuki T.
        • Happle C.
        • et al.
        iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb -Deficient Mice.
        Stem Cell Reports. 2018; 11: 696-710https://doi.org/10.1016/j.stemcr.2018.07.006
        • Chernykh E.
        • Shevela E.
        • Kafanova M.
        • Sakhno L.
        • Polovnikov E.
        • Ostanin A.
        Monocyte-derived macrophages for treatment of cerebral palsy: a study of 57 cases.
        J Neurorestoratology. 2018; 6: 41-47https://doi.org/10.2147/JN.S158843
        • Bartel R.L.
        • Cramer C.
        • Ledford K.
        • Longcore A.
        • Parrish C.
        • Stern T.
        • et al.
        The Aastrom experience.
        Stem Cell Res Ther. 2012; 3: 26https://doi.org/10.1186/scrt117
        • Hutchinson J.A.
        • Ahrens N.
        • Geissler E.K.
        MITAP-compliant characterization of human regulatory macrophages.
        Transpl Int. 2017; 30: 765-775https://doi.org/10.1111/tri.12988
        • Zhang X.
        • Edwards J.P.
        • Mosser D.M.
        The expression of exogenous genes in macrophages: obstacles and opportunities.
        Methods Mol Biol. 2009; 531: 123-143https://doi.org/10.1007/978-1-59745-396-7_9
        • Gough P.J.
        • Raines E.W.
        Gene therapy of apolipoprotein E-deficient mice using a novel macrophage-specific retroviral vector.
        Blood. 2003; 101: 485-491https://doi.org/10.1182/blood-2002-07-2131
        • Luo Y.-L.
        • Xu C.-F.
        • Li H.-J.
        • Cao Z.-T.
        • Liu J.
        • Wang J.-L.
        • et al.
        Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles.
        ACS Nano. 2018; 12: 994-1005https://doi.org/10.1021/acsnano.7b07874
        • Monsalve E.
        • Ruiz-García A.
        • Baladrón V.
        • Ruiz-Hidalgo M.J.
        • Sánchez-Solana B.
        • Rivero S.
        • et al.
        Notch1 upregulates LPS-induced macrophage activation by increasing NF-kappaB activity.
        Eur J Immunol. 2009; 39: 2556-2570https://doi.org/10.1002/eji.200838722
        • Moyes K.W.
        • Lieberman N.A.P.
        • Kreuser S.A.
        • Chinn H.
        • Winter C.
        • Deutsch G.
        • et al.
        Genetically Engineered Macrophages: A Potential Platform for Cancer Immunotherapy.
        Hum Gene Ther. 2017; 28: 200-215https://doi.org/10.1089/hum.2016.060
        • Klichinsky M.
        • Ruella M.
        • Shestova O.
        • Kenderian S.S.
        • Kim M.Y.
        • O'Connor R.
        • et al.
        Abstract 4575: Chimeric antigen receptor macrophages (CARMA) for adoptive cellular immunotherapy of solid tumors.
        Cancer Res. 2017; 77: 4575https://doi.org/10.1158/1538-7445.AM2017-4575
        • Morrissey M.A.
        • Williamson A.P.
        • Steinbach A.M.
        • Roberts E.W.
        • Kern N.
        • Headley M.B.
        • et al.
        Chimeric antigen receptors that trigger phagocytosis.
        Elife. 2018; 7e36688https://doi.org/10.7554/eLife.36688