Advertisement

Manufacturing chimeric antigen receptor T cells: issues and challenges

Published:January 23, 2019DOI:https://doi.org/10.1016/j.jcyt.2018.11.009

      Abstract

      Clinical trials of adoptively transferred CD19 chimeric antigen receptor (CAR) T cells have delivered unprecedented responses in patients with relapsed refractory B-cell malignancy. These results have prompted Food and Drug Administration (FDA) approval of two CAR T-cell products in this high-risk patient population. The widening range of indications for CAR T-cell therapy and increasing patient numbers present a significant logistical challenge to manufacturers aiming for reproducible delivery systems for high-quality clinical CAR T-cell products. This review discusses current and novel CAR T-cell processing methodologies and the quality control systems needed to meet the increasing clinical demand for these exciting new therapies.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ghorashian S.
        • Pule M.
        • Amrolia P.
        CD19 chimeric antigen receptor T cell therapy for haematological malignancies.
        Br J Haematol. 2015 May; 169: 463-478
        • Pule M.
        • Finney H.
        • Lawson A.
        Artificial T-cell receptors.
        Cytotherapy. 2003; 5: 211-226
        • Maude S.L.
        • Frey N.
        • Shaw P.A.
        • Aplenc R.
        • Barrett D.M.
        • Bunin N.J.
        • et al.
        Chimeric antigen receptor T cells for sustained remissions in leukemia.
        N Engl J Med. 2014 Oct 16; 371: 1507-1517
        • Maude S.L.
        • Laetsch T.W.
        • Buechner J.
        • Rives S.
        • Boyer M.
        • Bittencourt H.
        • et al.
        Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia.
        N Engl J Med. 2018; 378 (01): 439-448
        • Turtle C.J.
        • Hanafi L.-A.
        • Berger C.
        • Gooley T.A.
        • Cherian S.
        • Hudecek M.
        • et al.
        CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients.
        J Clin Invest. 2016; 126 (01): 2123-2138
        • Brentjens R.J.
        • Davila M.L.
        • Riviere I.
        • Park J.
        • Wang X.
        • Cowell L.G.
        • et al.
        CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia.
        Sci Transl Med. 2013 Mar 20; 5 (177ra38)
        • Kochenderfer J.N.
        • Dudley M.E.
        • Kassim S.H.
        • Somerville R.P.T.
        • Carpenter R.O.
        • Stetler-Stevenson M.
        • et al.
        Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor.
        J Clin Oncol. 2015 Feb 20; 33: 540-549
        • Holzinger A.
        • Barden M.
        • Abken H.
        The growing world of CAR T cell trials: a systematic review.
        Cancer Immunol Immunother CII. 2016 Dec; 65: 1433-1450
        • Vormittag P.
        • Gunn R.
        • Ghorashian S.
        • Veraitch F.S.
        A guide to manufacturing CAR T cell therapies.
        Curr Opin Biotechnol. 2018 Feb 17; 53: 164-181
        • Ali S.A.
        • Shi V.
        • Maric I.
        • Wang M.
        • Stroncek D.F.
        • Rose J.J.
        • et al.
        T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma.
        Blood. 2016 29; 128: 1688-1700
      1. Bluebird's BCMA CAR-T impresses at ASH.
        Nat Biotechnol. 2018 Jan 10; 36: 11
        • Lee L.
        • Draper B.
        • Chaplin N.
        • Philip B.
        • Chin M.
        • Galas-Filipowicz D.
        • et al.
        An APRIL-based chimeric antigen receptor for dual targeting of BCMA and TACI in multiple myeloma.
        Blood. 2018 Feb 15; 131: 746-758
        • Ramos C.A.
        • Ballard B.
        • Zhang H.
        • Dakhova O.
        • Gee A.P.
        • Mei Z.
        • et al.
        Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes.
        J Clin Invest. 2017 Sep 1; 127: 3462-3471
        • Maciocia P.M.
        • Wawrzyniecka P.A.
        • Philip B.
        • Ricciardelli I.
        • Akarca A.U.
        • Onuoha S.C.
        • et al.
        Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies.
        Nat Med. 2017 Dec; 23: 1416-1423
        • Bagley S.J.
        • Desai A.S.
        • Linette G.P.
        • June C.H.
        • O'Rourke D.M.
        CAR T Cell Therapy for Glioblastoma: Recent Clinical Advances and Future Challenges.
        Neuro-Oncol. 2018; 20: 1429-1438https://doi.org/10.1093/neuonc/noy032
        • Tchou J.
        • Zhao Y.
        • Levine B.L.
        • Zhang P.J.
        • Davis M.M.
        • Melenhorst J.J.
        • et al.
        Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer.
        Cancer Immunol Res. 2017 Dec; 5: 1152-1161
      2. (Commission Directive 2006/17/EC of 8 February 2006 implementing Directive 2004/23/EC of the European Parliament and of the Council as regards certain technical requirements for the donation, procurement and testing of human tissues and cells (Text with EEA relevance) [Internet]. 038, 32006L0017) ([accessed 28.11.06])
        • Lowdell M.W.
        • A. Thomas
        The expanding role of the clinical haematologist in the new world of advanced therapy medicinal products.
        Br J Haematol. 2017 Jan; 176: 9-15
        • Köhl U.
        • Arsenieva S.
        • Holzinger A.
        • Abken H.
        CAR T Cells in Trials: Recent Achievements and Challenges that Remain in the Production of Modified T Cells for Clinical Applications.
        Hum Gene Ther. 2018 May; 29: 559-568
        • Gee A.P.
        GMP CAR-T cell production.
        Best Pract Res Clin Haematol. 2018 Jun; 31: 126-134
        • Jensen M.C.
        • Riddell S.R.
        Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells.
        Immunol Rev. 2014 Jan; 257: 127-144
        • Abou-El-Enein M.
        • Schneider C.K.
        Deciphering the EU clinical trials regulation.
        Nat Biotechnol. 2016 Mar; 34: 231-233
      3. EudraLex - Volume 4 - Good Manufacturing Practice (GMP) guidelines - Public Health - European Commission [Internet]. Public Health - European Commission [Internet]. Public Health, 2018 (</health/documents/eudralex/vol-4_en>[accessed 17.06.18])
      4. European Pharmacopoeia 9th Edition. EDQM, 2018 ([Internet) ([accessed 17.06.18])
        • Gee A.P.
        Manufacturing genetically modified T cells for clinical trials.
        Cancer Gene Ther. 2015 Mar; 22: 67-71
        • Lu T.L.
        • Pugach O.
        • Somerville R.
        • Rosenberg S.A.
        • Kochenderfer J.N.
        • Better M.
        • et al.
        A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies.
        Hum Gene Ther Methods. 2016; 27: 209-218
        • Fesnak A.
        • Lin C.
        • Siegel D.L.
        • Maus M.V.
        CAR-T Cell Therapies From the Transfusion Medicine Perspective.
        Transfus Med Rev. 2016; 30: 139-145
        • Allen E.S.
        • Stroncek D.F.
        • Ren J.
        • Eder A.F.
        • West K.A.
        • Fry T.J.
        • et al.
        AUtologous lymphapheresis for the production of chimeric antigen receptor T cells.
        Transfusion (Paris). 2017; 57: 1133-1141
        • Loaiza S.
        • Haynes R.
        • Bray E.
        • Finn S.A.
        • Rezvani K.
        • Apperley J.
        • et al.
        Donor lymphocyte collections using the spectra Optia MNC version 5.
        Transfus Apher Sci Off J World Apher Assoc Off J Eur Soc Haemapheresis. 2013 Apr; 48: 171
        • Schulz M.
        • Bialleck H.
        • Thorausch K.
        • Bug G.
        • Dünzinger U.
        • Seifried E.
        • et al.
        Unstimulated leukapheresis in patients and donors: comparison of two apheresis systems.
        Transfusion (Paris). 2014 Jun; 54: 1622-1629
        • Kaiser A.D.
        • Assenmacher M.
        • Schröder B.
        • Meyer M.
        • Orentas R.
        • Bethke U.
        • et al.
        Towards a commercial process for the manufacture of genetically modified T cells for therapy.
        Cancer Gene Ther. 2015 Mar; 22: 72-78
        • Strasser E.F.
        • Eckstein R.
        Optimization of leukocyte collection and monocyte isolation for dendritic cell culture.
        Transfus Med Rev. 2010 Apr; 24: 130-139
        • Engstad C.S.
        • Gutteberg T.J.
        • Osterud B.
        Modulation of blood cell activation by four commonly used anticoagulants.
        Thromb Haemost. 1997 Apr; 77: 690-696
        • McFarland D.C.
        • Zhang C.
        • Thomas H.C.
        • Ratliff TL
        Confounding effects of platelets on flow cytometric analysis and cell-sorting experiments using blood-derived cells.
        Cytom Part J Int Soc Anal Cytol. 2006 Feb; 69: 86-94
        • Ino K.
        • Ageitos A.G.
        • Singh R.K.
        • Talmadge J.E.
        Activation-induced T cell apoptosis by monocytes from stem cell products.
        Int Immunopharmacol. 2001 Jul; 1: 1307-1319
        • Ino K.
        • Singh R.K.
        • Talmadge J.E.
        Monocytes from mobilized stem cells inhibit T cell function.
        J Leukoc Biol. 1997 May; 61: 583-591
        • Stroncek D.F.
        • Ren J.
        • Lee D.W.
        • Tran M.
        • Frodigh S.E.
        • Sabatino M.
        • et al.
        Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells.
        Cytotherapy. 2016; 18: 893-901
        • Janssen W.E.
        • Ribickas A.
        • Meyer L.V.
        • Smilee R.C.
        Large-scale Ficoll gradient separations using a commercially available, effectively closed, system.
        Cytotherapy. 2010 May; 12: 418-424
        • Stroncek D.F.
        • Fellowes V.
        • Pham C.
        • Khuu H.
        • Fowler D.H.
        • Wood L.V.
        • et al.
        Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies.
        J Transl Med. 2014 Sep 17; 12: 241
        • Stroncek D.F.
        • Lee D.W.
        • Ren J.
        • Sabatino M.
        • Highfill S.
        • Khuu H.
        • et al.
        Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells.
        J Transl Med. 2017 Mar 16; 15: 59
        • Turtle C.J.
        • Hanafi L.-A.
        • Berger C.
        • Hudecek M.
        • Pender B.
        • Robinson E.
        • et al.
        Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells.
        Sci Transl Med. 2016; 8 (07): 355ra116
        • Wang X
        • Rivière I.
        Clinical manufacturing of CAR T cells: foundation of a promising therapy.
        Mol Ther Oncolytics. 2016; 3: 16015
        • Kebriaei P.
        • Huls H.
        • Singh H.
        • Olivares S.
        • Figliola M.
        • Maiti S.
        • et al.
        Adoptive Therapy Using Sleeping Beauty Gene Transfer System and Artificial Antigen Presenting Cells to Manufacture T Cells Expressing CD19-Specific Chimeric Antigen Receptor.
        Blood [Internet]. 2014 Dec 6; 124 (311–311) (2014 [accessed 24.06.14])
        • Barrett D.M.
        • Singh N.
        • Liu X.
        • Jiang S.
        • June C.H.
        • Grupp S.A.
        • et al.
        Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy.
        Cytotherapy. 2014 May; 16: 619-630
        • Zeng W.
        • Su M.
        • Anderson K.S.
        • Sasada T.
        Artificial antigen-presenting cells expressing CD80, CD70, and 4-1BB ligand efficiently expand functional T cells specific to tumor-associated antigens.
        Immunobiology. 2014 Aug; 219: 583-592
        • Hollyman D.
        • Stefanski J.
        • Przybylowski M.
        • Bartido S.
        • Borquez-Ojeda O.
        • Taylor C.
        • et al.
        Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy.
        J Immunother. 2009 Mar; 32: 169-180
        • Mock U.
        • Nickolay L.
        • Philip B.
        • Cheung G.W.-K.
        • Zhan H.
        • Johnston I.C.D.
        • et al.
        AUtomated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy.
        Cytotherapy. 2016; 18: 1002-1011
        • Singh H.
        • Figliola M.J.
        • Dawson M.J.
        • Olivares S.
        • Zhang L.
        • Yang G.
        • et al.
        Manufacture of clinical-grade CD19-specific T cells stably expressing chimeric antigen receptor using Sleeping Beauty system and artificial antigen presenting cells.
        PloS One. 2013; 8: e64138
        • Levine B.L.
        Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells.
        Cancer Gene Ther. 2015 Mar; 22: 79-84
        • Wang X.
        • Olszewska M.
        • Qu J.
        • Wasielewska T.
        • Bartido S.
        • Hermetet G.
        • et al.
        Large-scale clinical-grade retroviral vector production in a fixed-bed bioreactor.
        J Immunother. 2015 Apr; 38: 127-135
        • Wang X.
        • Rivière I.
        Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies.
        Cancer Gene Ther. 2015 Mar; 22: 85-94
        • Sanber K.S.
        • Knight S.B.
        • Stephen S.L.
        • Bailey R.
        • Escors D.
        • Minshull J.
        • et al.
        Construction of stable packaging cell lines for clinical lentiviral vector production.
        Sci Rep. 2015 Mar 12; 5: 9021
        • Scholler J.
        • Brady T.L.
        • Binder-Scholl G.
        • Hwang W.-T.
        • Plesa G.
        • Hege K.M.
        • et al.
        Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells.
        Sci Transl Med. 2012 May 2; 4 (132ra53)
        • Kebriaei P.
        • Izsvák Z.
        • Narayanavari S.A.
        • Singh H.
        • Ivics Z.
        Gene Therapy with the Sleeping Beauty Transposon System.
        Trends Genet TIG. 2017; 33: 852-870
        • Ivics Z.
        • Hackett P.B.
        • Plasterk R.H.
        • Izsvák Z.
        Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells.
        Cell. 1997 Nov 14; 91: 501-510
        • Gogol-Döring A.
        • Ammar I.
        • Gupta S.
        • Bunse M.
        • Miskey C.
        • Chen W.
        • et al.
        Genome-wide Profiling Reveals Remarkable Parallels Between Insertion Site Selection Properties of the MLV Retrovirus and the piggyBac Transposon in Primary Human CD4(+) T Cells.
        Mol Ther J Am Soc Gene Ther. 2016 Mar; 24: 592-606
        • Saito S.
        • Nakazawa Y.
        • Sueki A.
        • Matsuda K.
        • Tanaka M.
        • Yanagisawa R.
        • et al.
        Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome-positive acute lymphoblastic leukemia.
        Cytotherapy. 2014 Sep; 16: 1257-1269
        • Ramanayake S.
        • Bilmon I.
        • Bishop D.
        • Dubosq M.-C.
        • Blyth E.
        • Clancy L.
        • et al.
        Low-cost generation of Good Manufacturing Practice-grade CD19-specific chimeric antigen receptor-expressing T cells using piggyBac gene transfer and patient-derived materials.
        Cytotherapy. 2015 Sep; 17: 1251-1267
        • Singh H.
        • Figliola M.J.
        • Dawson M.J.
        • Huls H.
        • Olivares S.
        • Switzer K.
        • et al.
        Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies.
        Cancer Res. 2011 May 15; 71: 3516-3527
        • Singh H.
        • Moyes J.S.E.
        • Huls M.H.
        • Cooper L.J.N.
        Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor.
        Cancer Gene Ther. 2015 Mar; 22: 95-100
        • Kebriaei P.
        • Ciurea S.O.
        • Huls M.H.
        • Singh H.
        • Olivares S.
        • Su S.
        • et al.
        Pre-Emptive Donor Lymphocyte Infusion with CD19-Directed, CAR-Modified T Cells Infused after Allogeneic Hematopoietic Cell Transplantation for Patients with Advanced CD19+ Malignancies.
        Blood [Internet]. 2015 Dec 3; 126 (862–862) (2015 [accessed 24.06.18])
        • Till B.G.
        • Jensen M.C.
        • Wang J.
        • Chen E.Y.
        • Wood B.L.
        • Greisman H.A.
        • et al.
        Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells.
        Blood. 2008 Sep 15; 112: 2261-2271
        • Tumaini B.
        • Lee D.W.
        • Lin T.
        • Castiello L.
        • Stroncek D.F.
        • Mackall C.
        • et al.
        Simplified process for the production of anti-CD19-CAR-engineered T cells.
        Cytotherapy. 2013 Nov; 15: 1406-1415
        • Bajgain P.
        • Mucharla R.
        • Wilson J.
        • Welch D.
        • Anurathapan U.
        • Liang B.
        • et al.
        Optimizing the production of suspension cells using the G-Rex “M” series.
        Mol Ther Methods Clin Dev. 2014; 1: 14015
        • Jin J.
        • Sabatino M.
        • Somerville R.
        • Wilson J.R.
        • Dudley M.E.
        • Stroncek D.F.
        • et al.
        Simplified method of the growth of human tumor infiltrating lymphocytes in gas-permeable flasks to numbers needed for patient treatment.
        J Immunother. 2012 Apr; 35: 283-292
        • Somerville R.P.T.
        • Devillier L.
        • Parkhurst M.R.
        • Rosenberg S.A.
        • Dudley M.E.
        Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE® bioreactor.
        J Transl Med. 2012 Apr 4; 10: 69
        • Kaneko S.
        • Mastaglio S.
        • Bondanza A.
        • Ponzoni M.
        • Sanvito F.
        • Aldrighetti L.
        • et al.
        IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes.
        Blood. 2009 Jan 29; 113: 1006-1015
        • Zhu F.
        • Shah N.
        • Xu H.
        • Schneider D.
        • Orentas R.
        • Dropulic B.
        • et al.
        Closed-system manufacturing of CD19 and dual-targeted CD20/19 chimeric antigen receptor T cells using the CliniMACS Prodigy device at an academic medical center.
        Cytotherapy. 2018 Mar; 20: 394-406
        • Priesner C.
        • Aleksandrova K.
        • Esser R.
        • Mockel-Tenbrinck N.
        • Leise J.
        • Drechsel K.
        • et al.
        AUtomated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products.
        Hum Gene Ther. 2016; 27: 860-869
        • Lock D.
        • Mockel-Tenbrinck N.
        • Drechsel K.
        • Barth C.
        • Mauer D.
        • Schaser T.
        • et al.
        AUtomated Manufacturing of Potent CD20-Directed Chimeric Antigen Receptor T Cells for Clinical Use.
        Hum Gene Ther. 2017 Oct; 28: 914-925
        • Germann A.
        • Oh Y.-J.
        • Schmidt T.
        • Schön U.
        • Zimmermann H.
        • von Briesen H.
        Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function.
        Cryobiology. 2013 Oct; 67: 193-200
        • Worsham D.N.
        • Reems J.-A.
        • Szczepiorkowski Z.M.
        • McKenna D.H.
        • Leemhuis T.
        • Mathew A.J.
        • et al.
        Clinical methods of cryopreservation for donor lymphocyte infusions vary in their ability to preserve functional T-cell subpopulations.
        Transfusion (Paris). 2017; 57: 1555-1565
        • Lee S.Y.
        • Olsen P.
        • Lee D.H.
        • Kenoyer A.L.
        • Budde L.E.
        • O'Steen S.
        • et al.
        Preclinical Optimization of a CD20-specific Chimeric Antigen Receptor Vector and Culture Conditions.
        J Immunother. 2018 Jan; 41: 19-31
        • Windrum P.
        • Morris T.C.M.
        • Drake M.B.
        • Niederwieser D.
        • Ruutu T.
        EBMT Chronic Leukaemia Working Party Complications Subcommittee. Variation in dimethyl sulfoxide use in stem cell transplantation: a survey of EBMT centres.
        Bone Marrow Transplant. 2005 Oct; 36: 601-603
        • Takaue Y.
        • Abe T.
        • Kawano Y.
        • Suzue T.
        • Saito S.
        • Hirao A.
        • et al.
        Comparative analysis of engraftment after cryopreservation of peripheral blood stem cell autografts by controlled- versus uncontrolled-rate methods.
        Bone Marrow Transplant. 1994 Jun; 13: 801-804
        • Anagnostakis I.
        • Papassavas A.C.
        • Michalopoulos E.
        • Chatzistamatiou T.
        • Andriopoulou S.
        • Tsakris A.
        • et al.
        Successful short-term cryopreservation of volume-reduced cord blood units in a cryogenic mechanical freezer: effects on cell recovery, viability, and clonogenic potential.
        Transfusion (Paris). 2014 Jan; 54: 211-223
        • Morgenstern D.A.
        • Ahsan G.
        • Brocklesby M.
        • Ings S.
        • Balsa C.
        • Veys P.
        • et al.
        Post-thaw viability of cryopreserved peripheral blood stem cells (PBSC) does not guarantee functional activity: important implications for quality assurance of stem cell transplant programmes.
        Br J Haematol. 2016; 174: 942-951
        • Rowley S.D.
        Hematopoietic stem cell processing and cryopreservation.
        J Clin Apheresis. 1992; 7: 132-134
        • Morgan R.A.
        • Boyerinas B.
        Genetic Modification of T Cells.
        Biomedicines. 2016 Apr 20; 4
      5. Briefing Document — Testing for Replication Competent Retrovirus (RCR)/Lentivirus (RCL) in Retroviral and Lentiviral Vector Based Gene Therapy Products — Revisiting Current FDA Recommendations:18, 2010.

        • de Wolf C.
        • van de Bovenkamp M.
        • Hoefnagel M.
        Regulatory perspective on in vitro potency assays for human T cells used in anti-tumor immunotherapy.
        Cytotherapy. 2018 May; 20: 601-622
      6. Validation of Analytical Procedures: Text and Methodology : ICH, 2018 ([Internet) ([accessed 17.06.18])
      7. Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products; Availability. US Department of Health and Human Services, Food and Drug Administration, Center for Biologics Evaluation and Research, January 2011 (2011 - Google Search [Internet]. [accessed 24.06.18])
        • Liu L.
        • Sommermeyer D.
        • Cabanov A.
        • Kosasih P.
        • Hill T.
        • Riddell S.R.
        Inclusion of Strep-tag II in design of antigen receptors for T-cell immunotherapy.
        Nat Biotechnol. 2016 Apr; 34: 430-434
      8. Failures in CAR T-cell products manufacturing.
        ([Internet]) ([accessed 17.06.18])
        • Piscopo N.J.
        • Mueller K.P.
        • Das A.
        • Hematti P.
        • Murphy W.L.
        • Palecek S.P.
        • et al.
        Bioengineering Solutions for Manufacturing Challenges in CAR T Cells.
        Biotechnol J. 2018 Feb; 13