Advertisement

Chemistry, manufacturing and controls for gene modified hematopoietic stem cells

  • Sandeep Soni
    Correspondence
    Correspondence: Sandeep Soni, MD, Associate Professor of Pediatrics, Division of Stem Cell Transplant and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, Palo Alto, CA 94304.
    Affiliations
    Division of Stem Cell Transplant and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford University, Palo Alto, California, USA
    Search for articles by this author
  • Donald B. Kohn
    Affiliations
    Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA
    Search for articles by this author
Published:February 08, 2019DOI:https://doi.org/10.1016/j.jcyt.2018.12.001

      Abstract

      Gene modification of hematopoietic stem cells is increasingly becoming popular as a therapeutic approach, given the recent approvals and the number of new applications for clinical trials targeting monogenetic and immunodeficiency disorders. Technological advances in stem cell selection, culture, transduction and gene editing now allow for efficient ex vivo genetic manipulation of stem cells. Gene-addition techniques using viral vectors (mainly retrovirus- and lentivirus-based) and gene editing using various targeted nuclease platforms (e.g., Zinc finger, TALEN and Crispr/Cas9) are being applied to the treatment of multiple genetic and immunodeficiency disorders. Herein, the current state of the art in manufacturing and critical assays that are required for ex vivo manipulation of stem cells are addressed. Important quality control and safety assays that need to be planned early in the process development phase of these products for regulatory approval are also highlighted.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Thrasher A.J.
        • Williams D.A.
        Evolving gene therapy in primary immunodeficiency.
        Mol Ther. 2017; 25: 1132-1141
        • Cavazzana M.
        • Mavilio F.
        Gene therapy for hemoglobinopathies.
        Hum Gene Ther. 2018; 29: 1106-1113
        • Aiuti A.
        • Biasco L.
        • Scaramuzza S.
        • Ferrua F.
        • Cicalese M.P.
        • Baricordi C.
        • et al.
        Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome.
        Science. 2013; 3411233151
        • Eichler F.
        • Duncan C.
        • Musolino P.L.
        • Orchard P.J.
        • De Oliveira S.
        • Thrasher A.J.
        • et al.
        Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy.
        N Engl J Med. 2017; 377: 1630-1638
        • Ribeil J.A.
        • Hacein-Bey-Abina S.
        • Payen E.
        • Magnani A.
        • Semeraro M.
        • Magrin E.
        • et al.
        Gene Therapy in a Patient with Sickle Cell Disease.
        N Engl J Med. 2017; 376: 848-855
        • Staal F.J.
        • Baum C.
        • Cowan C.
        • Dzierzak E.
        • Hacein-Bey-Abina S.
        • Karlsson S.
        • et al.
        Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications.
        Leukemia. 2011; 25: 1095-1102
        • Palpant N.J.
        • Dudzinski D.
        Zinc finger nucleases: looking toward translation.
        Gene Ther. 2013; 20: 121-127
        • Komaroff A.L.
        Gene editing using CRISPR: why the excitement?.
        JAMA. 2017; 318: 699-700
        • Scharenberg A.M.
        • Duchateau P.
        • Smith J.
        Genome engineering with TAL-effector nucleases and alternative modular nuclease technologies.
        Curr Gene Ther. 2013; 13: 291-303
        • Hoban M.D.
        • Bauer D.E.
        A genome editing primer for the hematologist.
        Blood. 2016; 127: 2525-2535
        • Hacein-Bey-Abina S.
        • Garrigue A.
        • Wang G.P.
        • Soulier J.
        • Lim A.
        • Morillon E.
        • et al.
        Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1.
        J Clin Invest. 2008; 118: 3132-3142
        • Hacein-Bey-Abina S.
        • Von Kalle C.
        • Schmidt M.
        • McCormack M.P.
        • Wulffraat N.
        • Leboulch P.
        • et al.
        LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.
        Science. 2003; 302: 415-419
        • Howe S.J.
        • Mansour M.R.
        • Schwarzwaelder K.
        • Bartholomae C.
        • Hubank M.
        • Kempski H.
        • et al.
        Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.
        J Clin Invest. 2008; 118: 3143-3150
        • Fu Y.
        • Foden J.A.
        • Khayter C.
        • Maeder M.L.
        • Reyon D.
        • Joung J.K.
        • et al.
        High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells.
        Nat Biotechnol. 2013; 31: 822-826
        • Wang Q.
        • Ui-Tei K.
        Computational Prediction of CRISPR/Cas9 Target Sites Reveals Potential Off-Target Risks in Human and Mouse.
        Methods Mol Biol. 2017; 1630: 43-53
        • Zhang X.H.
        • Tee L.Y.
        • Wang X.G.
        • Huang Q.S.
        • Yang S.H.
        Off-target Effects in CRISPR/Cas9-mediated Genome Engineering.
        Mol Ther Nucleic Acids. 2015; 4: e264
        • Karponi G.
        • Psatha N.
        • Lederer C.W.
        • Adair J.E.
        • Zervou F.
        • Zogas N.
        • et al.
        Plerixafor+G-CSF-mobilized CD34+ cells represent an optimal graft source for thalassemia gene therapy.
        Blood. 2015; 126: 616-619
        • Yannaki E.
        • Karponi G.
        • Zervou F.
        • Constantinou V.
        • Bouinta A.
        • Tachynopoulou V.
        • et al.
        Hematopoietic stem cell mobilization for gene therapy: superior mobilization by the combination of granulocyte-colony stimulating factor plus plerixafor in patients with beta-thalassemia major.
        Hum Gene Ther. 2013; 24: 852-860
        • Weaver C.H.
        • Hazelton B.
        • Birch R.
        • Palmer P.
        • Allen C.
        • Schwartzberg L.
        • et al.
        An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy.
        Blood. 1995; 86: 3961-3969
        • Bensinger W.
        • Appelbaum F.
        • Rowley S.
        • Storb R.
        • Sanders J.
        • Lilleby K.
        • et al.
        Factors that influence collection and engraftment of autologous peripheral-blood stem cells.
        J Clin Oncol. 1995; 13: 2547-2555
        • Bruno A.
        • Caravita T.
        • Adorno G.
        • Del Poeta G.
        • Venditti A.
        • Stasi R.
        • et al.
        Positive selection of CD34+ cells by immunoadsorption: factors affecting the final yield and hematopoietic recovery in patients with hematological malignancies and solid tumors.
        Transfus Apher Sci. 2002; 26: 103-110
        • Martin-Henao G.A.
        • Picon M.
        • Amill B.
        • Querol S.
        • Gonzalez J.R.
        • Martinez C.
        • et al.
        Isolation of CD34+ progenitor cells from peripheral blood by use of an automated immunomagnetic selection system: factors affecting the results.
        Transfusion. 2000; 40: 35-43
        • Lopez M.
        • Lemoine F.M.
        • Firat H.
        • Fouillard L.
        • Laporte J.P.
        • Lesage S.
        • et al.
        Bone marrow versus peripheral blood progenitor cells CD34 selection in patients with non-Hodgkin's lymphomas: different levels of tumor cell reduction. Implications for autografting.
        Blood. 1997; 90: 2830-2838
        • Biffi A.
        • Montini E.
        • Lorioli L.
        • Cesani M.
        • Fumagalli F.
        • Plati T.
        • et al.
        Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.
        Science. 2013; 3411233158
        • Gaspar H.B.
        • Parsley K.L.
        • Howe S.
        • King D.
        • Gilmour K.C.
        • Sinclair J.
        • et al.
        Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector.
        Lancet. 2004; 364: 2181-2187
        • Boulad F.
        • Shore T.
        • van Besien K.
        • Minniti C.
        • Barbu-Stevanovic M.
        • Fedus S.W.
        • et al.
        Safety and efficacy of plerixafor dose escalation for the mobilization of CD34(+) hematopoietic progenitor cells in patients with sickle cell disease: interim results.
        Haematologica. 2018; 103: 1577
        • Esrick E.B.
        • Manis J.P.
        • Daley H.
        • Baricordi C.
        • Trebeden-Negre H.
        • Pierciey F.J.
        • et al.
        Successful hematopoietic stem cell mobilization and apheresis collection using plerixafor alone in sickle cell patients.
        Blood Adv. 2018; 2: 2505-2512
        • Christodoulou I.
        • Patsali P.
        • Stephanou C.
        • Antoniou M.
        • Kleanthous M.
        • Lederer C.W.
        Measurement of lentiviral vector titre and copy number by cross-species duplex quantitative PCR.
        Gene Ther. 2016; 23: 113-118
        • Charrier S.
        • Ferrand M.
        • Zerbato M.
        • Precigout G.
        • Viornery A.
        • Bucher-Laurent S.
        • et al.
        Quantification of lentiviral vector copy numbers in individual hematopoietic colony-forming cells shows vector dose-dependent effects on the frequency and level of transduction.
        Gene Ther. 2011; 18: 479-487
        • Zischewski J.
        • Fischer R.
        • Bortesi L.
        Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases.
        Biotechnol Adv. 2017; 35: 95-104
        • Gabriel R.
        • Lombardo A.
        • Arens A.
        • Miller J.C.
        • Genovese P.
        • Kaeppel C.
        • et al.
        An unbiased genome-wide analysis of zinc-finger nuclease specificity.
        Nat Biotechnol. 2011; 29: 816-823
        • Schmidt M.
        • Schwarzwaelder K.
        • Bartholomae C.C.
        • Glimm H.
        • von Kalle C.
        Detection of retroviral integration sites by linear amplification-mediated PCR and tracking of individual integration clones in different samples.
        Methods Mol Biol. 2009; 506: 363-372
        • Gabriel R.
        • Eckenberg R.
        • Paruzynski A.
        • Bartholomae C.C.
        • Nowrouzi A.
        • Arens A.
        • et al.
        Comprehensive genomic access to vector integration in clinical gene therapy.
        Nat Med. 2009; 15: 1431-1436
        • Cornetta K.
        • Yao J.
        • Jasti A.
        • Koop S.
        • Douglas M.
        • Hsu D.
        • et al.
        Replication-competent lentivirus analysis of clinical grade vector products.
        Mol Ther. 2011; 19: 557-566
        • Skrdlant L.M.
        • Armstrong R.J.
        • Keidaisch B.M.
        • Lorente M.F.
        • DiGiusto D.L.
        Detection of Replication Competent Lentivirus Using a qPCR Assay for VSV-G.
        Mol Ther Methods Clin Dev. 2018; 8: 1-7
        • Sastry L.
        • Cornetta K.
        Detection of replication competent retrovirus and lentivirus.
        Methods Mol Biol. 2009; 506: 243-263
        • De Ravin S.S.
        • Gray J.T.
        • Throm R.E.
        • Spindler J.
        • Kearney M.
        • Wu X.
        • et al.
        False-positive HIV PCR test following ex vivo lentiviral gene transfer treatment of X-linked severe combined immunodeficiency vector.
        Mol Ther. 2014; 22: 244-245
        • Laetsch T.W.
        • Maude S.L.
        • Milone M.C.
        • Davis K.L.
        • Krueger J.
        • Cardenas A.M.
        • et al.
        False-positive results with select HIV-1 NAT methods following lentivirus-based tisagenlecleucel therapy.
        Blood. 2018; 131: 2596-2598
        • Koo T.
        • Lee J.
        • Kim J.S.
        Measuring and reducing off-target activities of programmable nucleases including CRISPR-Cas9.
        Mol Cells. 2015; 38: 475-481
        • Wang G.
        • Du M.
        • Wang J.
        • Zhu T.F.
        Genetic variation may confound analysis of CRISPR-Cas9 off-target mutations.
        Cell Discov. 2018; 4: 18
        • Zhou H.
        • Zhou M.
        • Li D.
        • Manthey J.
        • Lioutikova E.
        • Wang H.
        • et al.
        Whole genome analysis of CRISPR Cas9 sgRNA off-target homologies via an efficient computational algorithm.
        BMC Genomics. 2017; 18: 826
        • Cradick T.J.
        • Qiu P.
        • Lee C.M.
        • Fine E.J.
        • Bao G.
        COSMID: a web-based tool for identifying and validating CRISPR/Cas off-target sites.
        Mol Ther Nucleic Acids. 2014; 3: e214
        • Dabrowska M.
        • Czubak K.
        • Juzwa W.
        • Krzyzosiak W.J.
        • Olejniczak M.
        • Kozlowski P.
        qEva-CRISPR: a method for quantitative evaluation of CRISPR/Cas-mediated genome editing in target and off-target sites.
        Nucleic Acids Res. 2018; 46: e101
        • Tsai S.Q.
        • Zheng Z.
        • Nguyen N.T.
        • Liebers M.
        • Topkar V.V.
        • Thapar V.
        • et al.
        GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
        Nat Biotechnol. 2015; 33: 187-197
        • Martin F.
        • Sanchez-Hernandez S.
        • Gutierrez-Guerrero A.
        • Pinedo-Gomez J.
        • Benabdellah K.
        Biased and unbiased methods for the detection of off-target cleavage by CRISPR/Cas9: An Overview.
        Int J Mol Sci. 2016; 17