Advertisement

Characterization of human natural killer cells for therapeutic use

Published:March 22, 2019DOI:https://doi.org/10.1016/j.jcyt.2018.11.001

      Abstract

      As a part of the innate immune system, natural killer (NK) cells are cytotoxic lymphocytes that can exert cytotoxic activity against infected or transformed cells. Furthermore, due to their expression of a functional Fc receptor, they have also been eluded as a major effector fraction in antibody-dependent cellular cytotoxicity. These characteristics have led to multiple efforts to use them for adoptive immunotherapy against various malignancies.  There are now at least 70 clinical trials testing the safety and efficacy of NK cell products around the world in early-phase clinical trials. NK cells are also being tested in the context of tumor retargeting via chimeric antigen receptors, other genetic modification strategies, as well as tumor-specific activation strategies such as bispecific engagers with or without cytokine stimulations. One advantage of the use of NK cells for adoptive immunotherapy is their potential to overcome HLA barriers. This has led to a plethora of sources, such as cord blood hematopoietic stem cells and induced pluripotent stem cells, which can generate comparatively high cytotoxic NK cells to peripheral blood counterparts. However, the variety of the sources has led to a heterogeneity in the characterization of the final infusion product. Therefore, in this review, we will discuss a comparative assessment strategy, from characterization of NK cells at collection to final product release by various phenotypic and functional assays, in an effort to predict potency of the cellular product.

      Key words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kiessling R.
        • Klein E.
        • Pross H.
        • Wigzell H.
        “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell.
        Eur J Immunol. 1975; 5: 117-121
        • Kiessling R.
        • Klein E.
        • Wigzell H.
        “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype.
        Eur J Immunol. 1975; 5: 112-117
        • Herberman R.B.
        • Nunn M.E.
        • Holden H.T.
        • Lavrin D.H.
        Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells.
        Int J Cancer. 1975; 16: 230-239
        • Herberman R.B.
        • Nunn M.E.
        • Lavrin D.H.
        Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity.
        Int J Cancer. 1975; 16: 216-229
        • Rosenberg S.A.
        • Lotze M.T.
        • Muul L.M.
        • et al.
        Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer.
        N Engl J Med. 1985; 313: 1485-1492
        • Benyunes M.C.
        • Massumoto C.
        • York A.
        • Higuchi C.M.
        • Buckner C.D.
        • Thomson J.A.
        • et al.
        Interleukin-2 with or without lymphokine-activated killer cells as consolidative immunotherapy after autologous bone marrow transplantation for acute myelogenos leukemia.
        Bone Marrow Transplantation. 1993; 12: 159-163
        • Horwitz M.M.
        • Gale R.P.
        • Sondel P.M.
        • Goldman J.M.
        • Kersey J.
        • Kolb H.J.
        • et al.
        Graft-versus-leukemia reactions after bone marrow transplantation.
        Blood. 1990; 75: 555-562
        • Kolb H.J.
        • Schattenberg A.
        • Goldman J.M.
        • Hertenstein B.
        • Jacobsen N.
        • Arcese W.
        • et al.
        Graft-versus-leukemia effect of donor lymphocyte transfusions in marow grafted patients.
        Blood. 1995; 86: 20414-22050
        • Vidal S.M.
        • Khakoo S.I.
        • Biron C.A.
        Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience.
        Curr Opin Virol. 2011; 1: 497-512
        • Biron C.A.
        Activation and function of natural killer cell responses during viral infections.
        Curr Opin Immunol. 1997; 9: 24-34
        • Kagi D.
        • Ledermann B.
        • Burki K.
        • et al.
        Cytotoxicity mediated by T-cells and natural-killer-cells is greatly impaired in perforin deficient mice.
        Nature. 1994; 369: 31-37
        • Smyth M.J.
        • Cretney E.
        • Kelly J.M.
        • et al.
        Activation of NK cell cytotoxicity.
        Mol Immunol. 2005; 42: 501-510
        • Smyth M.J.
        • Thia K.Y.
        • Cretney E.
        • et al.
        Perforin is a major contributor to NK cell control of tumor metastasis.
        J Immunol. 1999; 162: 6658-6662
        • Zamai L.
        • Ahmad M.
        • Bennett I.M.
        • Azzoni L.
        • Alnemri E.S.
        • Perussia B.
        Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells.
        J Exp Med. 1998; 188: 2375-2380
        • Biburger M.
        • Lux A.
        • Nimmerjahn F.
        How immunoglobulin G antibodies kill target cells: revisiting an old paradigm.
        Adv Immunol. 2014; 124: 67-94
        • Lanier L.L.
        • Ruitenberg J.J.
        • Phillips J.H.
        Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes.
        J Immunol. 1988; 141: 3478-3485
        • Stetson D.B.
        • Mohrs M.
        • Reinhardt R.L.
        • et al.
        Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function.
        J Exp Med. 2003; 198: 1069-1076
        • Vivier E.
        • Raulet D.H.
        • Moretta A.
        • et al.
        Innate or adaptive immunity? The example of natural killer cells.
        Science. 2011; 331: 44-49
        • Raulet D.H.
        • Vance R.E.
        • McMahon C.W.
        Regulation of the natural killer cell receptor repertoire.
        Annu Rev Immunol. 2001; 19: 291-330
        • Long E.O.
        • Kim H.S.
        • Liu D.
        • Peterson M.E.
        • Rajagopalan S.
        Controlling natural killer cell responses: integration of signals for activation and inhibition.
        Annu Rev Immunol. 2013; 31: 227-258
        • Kadri N.
        • Wagner A.K.
        • Ganesan S.
        • et al.
        Dynamic regulation of NK cell responsiveness.
        Curr Top Microbiol Immunol. 2016; 395: 95-114
        • Cichicki F.
        • Schlums H.
        • Theorell J.
        • et al.
        Diversification and functional specialization of human NK cell subsets.
        Curr Top Microbiol Immunol. 2016; 395: 63-94
        • Hendricks D.W.
        • Min-Oo G.
        • Lanier L.L.
        Sweet Is the Memory of Past Troubles: NK Cells Remember.
        Curr Top Microbiol Immunol. 2016; 395: 147-171
        • Vivier E.
        • Tomasello E.
        • Baratin M.
        • Walzer T.
        • Ugolini S.
        Functions of natural killer cells.
        Nat Immunol. 2008; 9: 503-510
        • Seya T.
        • Kasamatsu J.
        • Azuma M.
        • Shime H.
        • Matsumoto M.
        Natural killer cell activation secondary to innate pattern sensing.
        J Innate Immun. 2011; 3: 264-273
        • Kärre K.
        • Ljunggren H.G.
        • Piontek G.
        • Kiessling R.
        Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy.
        Nature. 1986; 319: 675-678
        • Ljunggren H.G.
        • Kärre K.
        In search of the ‘missing self': MHC molecules and NK cell recognition.
        Immunol Today. 1990; 11: 237-244
        • Yokoyama W.M.
        • Kehn P.J.
        • Cohen D.I.
        • Shevach E.M.
        Chromosomal location of the Ly-49 (A1, YE1/48) multigene family. Genetic association with the NK 1.1 antigen.
        J Immunol. 1990; 145: 2353-2358
        • Colonna M.
        • Samaridis J.
        Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells.
        Science. 1995; 268: 405-408
        • Lanier L.L.
        NK cell recognition.
        Annu Rev Immunol. 2005; 23: 225-274
        • Moretta L.
        • Biassoni R.
        • Bottino C.
        • Mingari M.C.
        • Moretta A.
        Human NK-cell receptors.
        Immunol Today. 2000; 21: 420-422
        • Vance R.E.
        • Kraft J.R.
        • Altman J.D.
        • Jensen P.E.
        • Raulet D.H.
        Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b).
        J Exp Med. 1998; 188: 1841-1848
        • Braud V.M.
        • Allan D.S.
        • O'Callaghan C.A.
        • et al.
        HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.
        Nature. 1998; 391: 795-799
        • Borrego F.
        • Ulbrecht M.
        • Weiss E.H.
        • Coligan J.E.
        • Brooks A.G.
        Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis.
        J Exp Med. 1998; 187: 813-818
        • Hanke T.
        • Corral L.
        • Vance R.E.
        • Raulet D.H.
        2F1 antigen, the mouse homolog of the rat “mast cell function-associated antigen”, is a lectin-like type II transmembrane receptor expressed by natural killer cells.
        Eur J Immunol. 1998; 28: 4409-4417
        • Warren H.S.
        • Altin J.G.
        • Waldron J.C.
        • Kinnear B.F.
        • Parish C.R.
        A carbohydrate structure associated with CD15 (Lewisx) on myeloid cells is a novel ligand for human CD2.
        J.Immunol. 1996; 156: 2866-2873
        • Maenpaa A.
        • Jaaskelainen J.
        • Carpen O.
        • Patarroyo M.
        • Timonen T.
        Expression of integrins and other adhesion molecules on NK cells; impact of IL-2 on short- and long-term cultures.
        Int J Cancer. 1993; 53: 850-855
        • Perez-Villar J.J.
        • Zapata J.M.
        • Melero I.
        • Postigo A.
        • Sanchez-Madrid E.
        • Lopez-Botet M.
        Expression and function of alpha 4/beta 7 integrin on human natural killer cells.
        Immunology. 1996; 89: 96-104
        • Frey M.
        • Packianathan N.B.
        • Fehniger T.A.
        • et al.
        Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets.
        J Immunol. 1998; 161: 400-408
        • Robertson M.J.
        Role of chemokines in the biology of natural killer cells.
        J Leukoc Biol. 2002; 71: 173-183
        • Barber D.F.
        • Faure M.
        • Long E.O.
        LFA-1 contributes an early signal for NK cell cytotoxicity.
        J Immunol. 2004; 173: 3653-3659
        • Shibuya K.
        • Lanier L.L.
        • Phillips J.H.
        • et al.
        Physical and functional association of LFA-1 with DNAM-1 adhesion molecule.
        Immunity. 1999; 11: 615-623
        • Susek K.H.
        • Karvoni M.
        • Alici E.
        • Lundqvist A.
        The role of CXC chemokine receptors 1–4 on immune cells in the tumor microenvironment.
        Front Immunol. 2018; 9: 2159
        • Paust S.
        • Gill H.S.
        • Wang B.Z.
        • et al.
        Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses.
        Nat Immunol. 2010; 11: 1127-1135
        • O'Leary J.G.
        • Goodarzi M.
        • Drayton D.L.
        • von Andrian U.H.
        T cell- and B cell-independent adaptive immunity mediated by natural killer cells.
        Nat Immunol. 2006; 7: 507-516
        • Cooper M.A.
        • Elliott J.M.
        • Keyel P.A.
        • Yang L.
        • Carrero J.A.
        • Yokoyama W.M.
        Cytokine-induced memory-like natural killer cells.
        Proc Natl Acad Sci U S A. 2009; 106: 1915-1919
        • Sun J.C.
        • Beilke J.N.
        • Lanier L.L.
        Adaptive immune features of natural killer cells.
        Nature. 2009; 457: 557-561
        • Schlums H.
        • Cichocki F.
        • Tesi B.
        • et al.
        Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function.
        Immunity. 2015; 42: 443-456
        • Cichocki F.
        • Verneris M.R.
        • Cooley S.
        • et al.
        The Past, Present, and Future of NK Cells in Hematopoietic Cell Transplantation and Adoptive Transfer.
        Curr Top Microbiol Immunol. 2016; 395: 225-243
        • Cichocki F.
        • Schlums H.
        • Theorell J.
        • et al.
        Diversification and Functional Specialization of Human NK Cell Subsets.
        Curr Top Microbiol Immunol. 2015;
        • Guma M.
        • Angulo A.
        • Vilches C.
        • Gomez-Lozano N.
        • Malats N.
        • Lopez-Botet M.
        Imprint of human cytomegalovirus infection on the NK cell receptor repertoire.
        Blood. 2004; 104: 3664-3671
        • Beziat V.
        • Liu L.L.
        • Malmberg J.A.
        • et al.
        NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs.
        Blood. 2013; 121: 2678-2688
        • Foley B.
        • Cooley S.
        • Verneris M.R.
        • et al.
        Human cytomegalovirus (CMV)-induced memory-like NKG2C(+) NK cells are transplantable and expand in vivo in response to recipient CMV antigen.
        J Immunol. 2012; 189: 5082-5088
        • Phillips J.H.
        • Lanier L.L.
        Dissection of the lymphokine-activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis.
        J Exp Med. 1986; 164: 814-825
        • Hercend T.
        • Takvorian T.
        • Nowill A.
        • et al.
        Characterization of natural killer cells with antileukemia activity following allogeneic bone marrow transplantation.
        Blood. 1986; 67: 722-728
        • Malmberg K.J.
        • Bryceson Y.T.
        • Carlsten M.
        • et al.
        NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy.
        Cancer Immunol Immunother. 2008; 57: 1541-1552
        • Malmberg K.J.
        • Schaffer M.
        • Ringden O.
        • Remberger M.
        • Ljunggren H.G.
        KIR-ligand mismatch in allogeneic hematopoietic stem cell transplantation.
        Mol Immunol. 2005; 42: 531-534
        • Miller J.S.
        • Soignier Y.
        • Panoskaltsis-Mortari A.
        • et al.
        Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.
        Blood. 2005; 105: 3051-3057
        • Ruggeri L.
        • Capanni M.
        • Casucci M.
        • et al.
        Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation.
        Blood. 1999; 94: 333-339
        • Ruggeri L.
        • Capanni M.
        • Urbani E.
        • et al.
        Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.
        Science. 2002; 295: 2097-2100
        • Hsu K.C.
        • Keever-Taylor C.A.
        • Wilton A.
        • et al.
        Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes.
        Blood. 2005; 105: 4878-4884
        • Cooley S.
        • Trachtenberg E.
        • Bergemann T.L.
        • et al.
        Donors with group B KIR haplotypes improve relapse-free survival after unrelated hematopoietic cell transplantation for acute myelogenous leukemia.
        Blood. 2009; 113: 726-732
        • Cooley S.
        • Weisdorf D.J.
        • Guethlein L.A.
        • et al.
        Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia.
        Blood. 2010; 116: 2411-2419
        • Cooley S.
        • Weisdorf D.J.
        • Guethlein L.A.
        • et al.
        Donor killer cell Ig-like receptor B haplotypes, recipient HLA-C1, and HLA-C mismatch enhance the clinical benefit of unrelated transplantation for acute myelogenous leukemia.
        J Immunol. 2014; 192: 4592-4600
        • Venstrom J.M.
        • Zheng J.
        • Noor N.
        • et al.
        KIR and HLA genotypes are associated with disease progression and survival following autologous hematopoietic stem cell transplantation for high-risk neuroblastoma.
        Clin Cancer Res. 2009; 15: 7330-7334
        • Pittari G.
        • Liu X.R.
        • Selvakumar A.
        • et al.
        NK cell tolerance of self-specific activating receptor KIR2DS1 in individuals with cognate HLA-C2 ligand.
        J Immunol. 2013; 190: 4650-4660
        • Scquizzato E.
        • Zambello R.
        • Teramo A.
        • et al.
        KIR/HLA-I mismatching and risk of relapse in paediatric patients undergoing non-haploidentical allogeneic haematopoietic stem cell transplantation.
        Pediatr Transplant. 2011; 15: 198-204
        • Bjorklund A.T.
        • Carlsten M.
        • Sohlberg E.
        • et al.
        Complete Remission with Reduction of High-Risk Clones following Haploidentical NK-Cell Therapy against MDS and AML.
        Clin Cancer Res. 2018; 24: 1834-1844
        • Kottaridis P.D.
        • North
        • Tsirogianni M.
        • Marden C.
        • et al.
        Two-stage priming of allogeneic Natural Killer cells for the treatment of patients with acute myeloid leukemia; a phase I trial.
        PLoS One. 2015; 10e0123416
        • Koehl U.
        • Kalberer C.
        • Spanholtz J.
        • et al.
        Advances in clinical NK cell studies: Donor selection, manufacturing and quality control.
        Oncoimmunology. 2016; 5e1115178
        • Dahlberg C.I.
        • Sarhan D.
        • Chrobok M.
        • Duru A.D.
        • Alici E.
        Natural killer cell-based therapies targeting cancer: possible strategies to gain and sustain anti-tumor activity.
        Front Immunol. 2015; 6: 605
        • Sutlu T.
        • Alici E.
        Natural killer cell-based immunotherapy in cancer: current insights and future prospects.
        J Intern Med. 2009; 266: 154-181
        • Sabry M.
        • Lowdell M.W.
        Tumor-primed NK cells: waiting for the green light.
        Front Immunol. 2013; 4: 408
        • Lee D.A.
        Regulatory Considerations for NK cells used in human immunotherapy applications.
        Methods Mol Biol. 2016; 1441: 347-361
        • Lee-MacAry A.E.
        • Ross E.L.
        • Davies D.
        • et al.
        Development of a novel flow cytometric cell-mediated cytotoxicity assay using fluorophores PKH-26 and TO-PRO-3 iodide.
        J. Immunol. Methods. 2001; 252: 83-92
        • Alter G.
        • Malenfant J.M.
        • Altfeld M.
        CD107a as a functional marker for the identification of natural killer cell activity.
        J Immunol Methods. 2004; 294: 15-22
        • Wendt K.
        • Wilk E.
        • Buyny S.
        • Buer J.
        • Schmidt R.E.
        • Jacobs R.
        Gene and protein characteristics reflect functional diversity of CD56dim and CD56bright NK cells.
        J Leukoc Biol. 2006; 80: 1529-1541
        • Cooper M.A.
        • Fehniger T.A.
        • Caligiuri M.A.
        The biology of human natural killer-cell subsets.
        Trends Immunol. 2001; 22: 633-640
        • Caligiuri M.A.
        Human natural killer cells.
        Blood. 2008; 112: 461-469
        • Michel T.
        • Poli A.
        • Cuapio A.
        • et al.
        Human CD56bright NK cells: an update.
        J Immunol. 2016; 196: 2923-2931
        • Ziegler S.
        • Weiss E.
        • Schmitt A.L.
        • et al.
        CD56 is a pathogen recognition receptor on human natural killer cells.
        Sci Rep. 2017; 7: 6138
        • Mace E.M.
        • Gunesch J.T.
        • Dixon A.
        • Orange J.S.
        Human NK cell development requires CD56-mediated motility and formation of the developmental synapse.
        Nature Communications. 2016; 7: 12171
        • North J.
        • Bakhsh I.
        • Marden C.
        • et al.
        Tumor-primed human natural killer cells lyse NK-resistant tumor targets: evidence of a two-stage process in resting NK cell activation.
        J Immunol. 2007; 178: 85-94
        • Harrison D.
        • Phillips J.H.
        • Lanier L.L.
        Involvement of a metalloprotease in spontaneous and phorbol ester-induced release of natural killer cell-associated Fc gamma RIII (CD16-II).
        J Immunol. 1991; 147: 3459-3465
        • Chang H.
        • Samiee S.
        • Yi Q.L.
        Prognostic relevance of CD56 expression in multiple myeloma: a study including 107 cases treated with high-dose melphalan-based chemotherapy and autologous stem cell transplant.
        Leuk Lymphoma. 2006; 47: 43-47
        • Cartron G.
        • Dacheux L.
        • Salles G.
        • et al.
        Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene.
        Blood. 2002; 99: 754-758
        • Zhang W.
        • Gordon M.
        • Schultheis A.M.
        • et al.
        FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab.
        J Clin Oncol. 2007; 25: 3712-3718
        • Musolino A.
        • Naldi N.
        • Bortesi B.
        • et al.
        Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer.
        J Clin Oncol. 2008; 26: 1789-1796
        • Bibeau F.
        • Lopez-Crapez E.
        • Di Fiore F.
        • et al.
        Impact of Fc{gamma}RIIa-Fc{gamma}RIIIa polymorphisms and KRAS mutations on the clinical outcome of patients with metastatic colorectal cancer treated with cetuximab plus irinotecan.
        J Clin Oncol. 2009; 27: 1122-1129
        • Jochems C.
        • Hodge J.W.
        • Fantini M.
        • et al.
        An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele.
        Oncotarget. 2016; 7: 86359-86373
        • Romee R.
        • Lenvik T.
        • Wang Y.
        • Walcheck B.
        • Verneris M.R.
        • Miller J.S.
        ADAM17, a novel metalloproteinase, mediates CD16 and CD62L shedding in human NK cells and modulates IFNγ responses.
        Blood. 2011; 118: 2184
        • Jing Y.
        • Ni Z.
        • Wu J.
        • et al.
        Identification of an ADAM17 cleavage region in human CD16 (FcgammaRIII) and the engineering of a non-cleavable version of the receptor in NK cells.
        PLoS One. 2015; 10e0121788
        • Srpan K.
        • Ambrose A.
        • Karampatzakis A.
        • et al.
        Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells.
        The Journal of Cell Biology. 2018; 217: 3267
        • Alici E.
        • Sutlu T.
        • Bjorkstrand B.
        • et al.
        Autologous antitumor activity by NK cells expanded from myeloma patients using GMP-compliant components.
        Blood. 2008; 111: 3155-3162
        • Koehl U.
        • Esser R.
        • Zimmermann S.
        • et al.
        Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children.
        Klin Padiatr. 2005; 217: 345-350
        • Katodritou E.
        • Terpos E.
        • North J.
        • et al.
        Tumor-primed natural killer cells from patients with multiple myeloma lyse autologous, NK-resistant, bone marrow-derived malignant plasma cells.
        Am J Hematol. 2011; 86: 967-973
        • Gasser S.
        • Orsulic S.
        • Brown E.J.
        • Raulet D.H.
        The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor.
        Nature. 2005; 436: 1186-1190
        • Diefenbach A.
        • Jensen E.R.
        • Jamieson A.M.
        • Raulet D.H.
        Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity.
        Nature. 2001; 413: 165-171
        • Cerwenka A.
        • Bakker A.B.
        • McClanahan T.
        • et al.
        Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice.
        Immunity. 2000; 12: 721-727
        • Lanier L.L.
        NKG2D Receptor and Its Ligands in Host Defense.
        Cancer Immunol Res. 2015; 3: 575-582
        • Kruse P.H.
        • Matta J.
        • Ugolini S.
        • Vivier E.
        Natural cytotoxicity receptors and their ligands.
        Immunol Cell Biol. 2014; 92: 221-229
        • Garg A.
        • Barnes P.F.
        • Porgador A.
        • et al.
        Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor.
        J Immunol. 2006; 177: 6192-6198
        • Ferlazzo G.
        • Tsang M.L.
        • Moretta L.
        • Melioli G.
        • Steinman R.M.
        • Munz C.
        Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells.
        J Exp Med. 2002; 195: 343-351
        • Horton N.C.
        • Mathew P.A.
        NKp44 and natural cytotoxicity receptors as damage-associated molecular pattern recognition receptors.
        Front Immunol. 2015; 6: 31
        • Arnon T.I.
        • Lev M.
        • Katz G.
        • Chernobrov Y.
        • Porgador A.
        • Mandelboim O.
        Recognition of viral hemagglutinins by NKp44 but not by NKp30.
        Eur J Immunol. 2001; 31: 2680-2689
        • Mandelboim O.
        • Lieberman N.
        • Lev M.
        • et al.
        Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells.
        Nature. 2001; 409: 1055-1060
        • Shibuya K.
        • Shirakawa J.
        • Kameyama T.
        • et al.
        CD226 (DNAM-1) is involved in lymphocyte function-associated antigen 1 costimulatory signal for naive T cell differentiation and proliferation.
        J Exp Med. 2003; 198: 1829-1839
        • Wagner A.K.
        • Kadri N.
        • Snall J.
        • et al.
        Expression of CD226 is associated to but not required for NK cell education.
        Nat Commun. 2017; 8: 15627
        • Enqvist M.
        • Ask E.H.
        • Forslund E.
        • et al.
        Coordinated expression of DNAM-1 and LFA-1 in educated NK cells.
        J Immunol. 2015; 194: 4518-4527
        • Seth S.
        • Georgoudaki A.M.
        • Chambers B.J.
        • et al.
        Heterogeneous expression of the adhesion receptor CD226 on murine NK and T cells and its function in NK-mediated killing of immature dendritic cells.
        J Leukoc Biol. 2009; 86: 91-101
        • Martinet L.
        • Ferrari De Andrade L.
        • Guillerey C.
        • et al.
        DNAM-1 expression marks an alternative program of NK cell maturation.
        Cell Rep. 2015; 11: 85-97
        • Nabekura T.
        • Kanaya M.
        • Shibuya A.
        • Fu G.
        • Gascoigne N.R.
        • Lanier L.L.
        Costimulatory Molecule DNAM-1 Is Essential for Optimal Differentiation of Memory Natural Killer Cells during Mouse Cytomegalovirus Infection.
        Immunity. 2014;
        • Mace E.M.
        • Zhang J.
        • Siminovitch K.A.
        • Takei F.
        Elucidation of the integrin LFA-1-mediated signaling pathway of actin polarization in natural killer cells.
        Blood. 2010; 116: 1272-1279
        • Kim S.
        • Poursine-Laurent J.
        • Truscott S.M.
        • et al.
        Licensing of natural killer cells by host major histocompatibility complex class I molecules.
        Nature. 2005; 436: 709-713
        • Fernandez N.C.
        • Treiner E.
        • Vance R.E.
        • Jamieson A.M.
        • Lemieux S.
        • Raulet D.H.
        A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules.
        Blood. 2005; 105: 4416-4423
        • Anfossi N.
        • Andre P.
        • Guia S.
        • et al.
        Human NK cell education by inhibitory receptors for MHC class I.
        Immunity. 2006; 25: 331-342
        • Brodin P.
        • Kärre K.
        • Höglund P.
        NK cell education: not an on-off switch but a tunable rheostat.
        Trends Immunol. 2009; 30: 143-149
        • Sabry M.
        • Tsiriogianni M.
        • Bakhsh I.A.
        • et al.
        Leukemic priming of resting NK cells is KIR independent but requires CD15-mediated CD2 ligation and natural cytotoxicity receptors.
        J.Immunol. 2011; 187: 6227-6234
        • Suck G.
        • Chu S.
        • Niam M.
        • Lim T.
        • Hui K.
        • Koh M.
        Highly cytotoxic CD56+CD8+ NK cells as potential novel candidates for cancer cellular therapy.
        Clin Cancer Res. 2007; 13 (Abstract B3)
        • Addison E.G.
        • North J.
        • Bakhsh I.
        • et al.
        Ligation of CD8α+ve on human Natural Killer cells prevents activation-induced apoptosis and enhances cytolytic activity.
        Immunology. 2005; 116: 354-361
        • Clausen J.
        • Vergeiner B.
        • Enk M.
        • Petzer A.
        • Gasti G.
        • Gunsilius E.
        Functional significance of the activation-associated receptors CD25 and CD69 on human NK cells and NK-like T cell.
        Immunobiology. 2003; 207: 85-93
        • Juelke K.
        • Killig M.
        • Luetke-Eversloh M.
        • et al.
        CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells.
        Blood. 2010; 116: 1299-1307
        • Stanietsky N.
        • Simic H.
        • Arapovic J.
        • et al.
        The interation of TIGIT with PVR and PVRL2 inhibits NK cell cytoxicity.
        Proc Nat Acad Sci. 2009; 106: 17858-17863