Advertisement

Epstein-Barr Virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy

  • MAMTA KALRA
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics
    Search for articles by this author
  • ULRIKE GERDEMANN
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics
    Search for articles by this author
  • JESSICA D. LUU
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics
    Search for articles by this author
  • MINTHRAN C. NGO
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics
    Search for articles by this author
  • ANN M. LEEN
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics

    Pathology and Immunology
    Search for articles by this author
  • CHRYSTAL U. LOUIS
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics
    Search for articles by this author
  • CLIONA M. ROONEY
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics

    Pathology and Immunology

    Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
    Search for articles by this author
  • STEPHEN GOTTSCHALK
    Correspondence
    Correspondence: Stephen Gottschalk, Department of Bone Marrow Transplant and Cellular Therapy, St Jude Children's Research Hospital, 262 Danny Thomas Place, MS321, Memphis, TN 38105 USA.
    Affiliations
    Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist, Baylor College of Medicine, Houston, Texas, USA

    Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA

    Departments of Pediatrics

    Pathology and Immunology
    Search for articles by this author
Published:November 02, 2018DOI:https://doi.org/10.1016/j.jcyt.2018.08.001

      Highlights

      • BARF1-specific T cells are present in the majority of EBV-seropositive individuals.
      • Class I– or II–restricted T-cell epitopes are recognized by BARF1-specific T cells.
      • EBV-positive tumor cells are recognized and killed by BARF1-specific T cells.
      • BARF1 presents an attractive antigen for EBV-targeted T-cell therapies.

      Abstract

      Background aims

      EBV type II latency tumors, such as Hodgkin lymphoma (HL), Non-Hodgkin lymphoma (NHL) and nasopharyngeal carcinoma, express a limited array of EBV antigens including Epstein-Barr nuclear antigen (EBNA)1, latent membrane protein (LMP)1, LMP2, and BamH1-A right frame 1 (BARF1). Adoptive immunotherapy for these malignancies have focused on EBNA1, LMP1 and LMP2 because little is known about the cellular immune response to BARF1.

      Methods

      To investigate whether BARF1 is a potential T-cell immunotherapy target, we determined the frequency of BARF1-specific T-cell responses in the peripheral blood of EBV-seropositive healthy donor and patients with EBV-positive malignancies, mapped epitopes and evaluated the effector function of ex vivo–generated BARF1-specific T-cell lines.

      Results

      BARF1-specific T cells were present in the peripheral blood of 12/16 (75%) EBV-positive healthy donors and 13/20 (65%) patients with EBV-positive malignancies. Ex vivo expanded BARF1-specific T-cell lines contained CD4- and CD8-positive T-cell subpopulations, and we identified 23 BARF1 peptides, which encoded major histocompatibility complex class I– and/or II–restricted epitopes. Epitope mapping identified one human leukocyte antigen (HLA)-A*02-restricted epitope that was recognized by 50% of HLA-A*02, EBV-seropositive donors and one HLA-B*15(62)-restricted epitope. Exvivo expanded BARF1-specific T cells recognized and killed autologous, EBV-transformed lymphoblastoid cell lines and partially HLA-matched EBV-positive lymphoma cell lines.

      Discussion

      BARF1 should be considered as an immunotherapy target for EBV type II (and III) latency. Targeting BARF1, in addition to EBNA1, LMP1 and LMP2, has the potential to improve the efficacy of current T-cell immunotherapy approaches for these malignancies.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bollard C.M.
        • Gottschalk S.
        • Leen A.M.
        • Weiss H.
        • Straathof K.C.
        • Carrum G.
        • Khalil M.
        • Wu M.F.
        • Huls M.H.
        • Chang C.C.
        • Gresik M.V.
        • Gee A.P.
        • Brenner M.K.
        • Rooney C.M.
        • Heslop H.E.
        Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer.
        Blood. 2007; 110: 2838-2845
        • Louis C.U.
        • Straathof K.
        • Bollard C.M.
        • Ennamuri S.
        • Gerken C.
        • Lopez T.T.
        • Huls M.H.
        • Sheehan A.
        • Wu M.F.
        • Liu H.
        • Gee A.
        • Brenner M.K.
        • Rooney C.M.
        • Heslop H.E.
        • Gottschalk S.
        Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma.
        J. Immunother. 2010; 33: 983-990
        • Bollard C.M.
        • Gottschalk S.
        • Torrano V.
        • Diouf O.
        • Ku S.
        • Hazrat Y.
        • Carrum G.
        • Ramos C.
        • Fayad L.
        • Shpall E.J.
        • Pro B.
        • Liu H.
        • Wu M.F.
        • Lee D.
        • Sheehan A.M.
        • Zu Y.
        • Gee A.P.
        • Brenner M.K.
        • Heslop H.E.
        • Rooney C.M.
        Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins.
        J. Clin. Oncol. 2014; 32: 798-808
        • Comoli P.
        • Pedrazzoli P.
        • Maccario R.
        • Basso S.
        • Carminati O.
        • Labirio M.
        • Schiavo R.
        • Secondino S.
        • Frasson C.
        • Perotti C.
        • Moroni M.
        • Locatelli F.
        • Siena S.
        Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes.
        J. Clin. Oncol. 2005; 23: 8942-8949
        • Chia W.K.
        • Teo M.
        • Wang W.W.
        • Lee B.
        • Ang S.F.
        • Tai W.M.
        • Chee C.L.
        • Ng J.
        • Kan R.
        • Lim W.T.
        • Tan S.H.
        • Ong W.S.
        • Cheung Y.B.
        • Tan E.H.
        • Connolly J.E.
        • Gottschalk S.
        • Toh H.C.
        Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma.
        Mol. Ther. 2014; 22: 132-139
        • Smith C.
        • Tsang J.
        • Beagley L.
        • Chua D.
        • Lee V.
        • Li V.
        • Moss D.J.
        • Coman W.
        • Chan K.H.
        • Nicholls J.
        • Kwong D.
        • Khanna R.
        Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy.
        Cancer Res. 2012; 72: 1116-1125
        • Cohen J.I.
        Epstein-Barr virus infection.
        N. Engl. J. Med. 2000; 343: 481-492
        • Longnecker R.M.
        • Kieff E.
        • Cohen J.I.
        • Virus Epstein-Barr
        Fields Virology.
        in: Knipe D.M. Howley P.M. Lippincott Williams & Wilkins, Philadelphia2013: 1898-1959
        • Decaussin G.
        • Sbih-Lammali F.
        • de Turenne-Tessier M.
        • Bouguermouh A.
        • Ooka T.
        Expression of BARF1 gene encoded by Epstein-Barr virus in nasopharyngeal carcinoma biopsies.
        Cancer Res. 2000; 60: 5584-5588
        • Jang B.G.
        • Jung E.J.
        • Kim W.H.
        Expression of BamHI-A Rightward Transcripts in Epstein-Barr Virus-Associated Gastric Cancers.
        Cancer Res Treat. 2011; 43: 250-254
        • Fiorini S.
        • Ooka T.
        Secretion of Epstein-Barr virus-encoded BARF1 oncoprotein from latently infected B cells.
        Virol J. 2008; 5
        • Straathof K.C.
        • Bollard C.M.
        • Popat U.
        • Huls M.H.
        • Lopez T.
        • Morriss M.C.
        • Gresik M.V.
        • Gee A.P.
        • Russell H.V.
        • Brenner M.K.
        • Rooney C.M.
        • Heslop H.E.
        Treatment of Nasopharyngeal Carcinoma with Epstein-Barr Virus-specific T Lymphocytes.
        Blood. 2005; 105: 1898-1904
        • Hislop A.D.
        • Taylor G.S.
        T-Cell Responses to EBV.
        Current topics in microbiology and immunology. 2015; 391: 325-353
        • Martorelli D.
        • Houali K.
        • Caggiari L.
        • Vaccher E.
        • Barzan L.
        • Franchin G.
        • Gloghini A.
        • Pavan A.
        • Da P.A.
        • Tedeschi R.M.
        • De R.
        • V A.Carbone
        • Ooka T.
        • De P.P.
        • Dolcetti R.
        Spontaneous T cell responses to Epstein-Barr virus-encoded BARF1 protein and derived peptides in patients with nasopharyngeal carcinoma: bases for improved immunotherapy.
        Int. J. Cancer. 2008; 123: 1100-1107
        • Fae D.A.
        • Martorelli D.
        • Mastorci K.
        • Muraro E.
        • Dal Col J.
        • Franchin G.
        • Barzan L.
        • Comaro E.
        • Vaccher E.
        • Rosato A.
        • Dolcetti R.
        Broadening Specificity and Enhancing Cytotoxicity of Adoptive T Cells for Nasopharyngeal Carcinoma Immunotherapy.
        Cancer immunology research. 2016; 4: 431-440
        • Taylor G.S.
        • Long H.M.
        • Brooks J.M.
        • Rickinson A.B.
        • Hislop A.D.
        The immunology of Epstein-Barr virus-induced disease.
        Annual review of immunology. 2015; 33: 787-821
        • Takada K.
        Role of EBER and BARF1 in nasopharyngeal carcinoma (NPC) tumorigenesis.
        Seminars in cancer biology. 2012; 22: 162-165
        • Mohidin T.B.
        • Ng C.C.
        BARF1 gene silencing triggers caspase-dependent mitochondrial apoptosis in Epstein-Barr virus-positive malignant cells.
        J Biosci. 2015; 40: 41-51
        • Ohashi M.
        • Fogg M.H.
        • Orlova N.
        • Quink C.
        • Wang F.
        An Epstein-Barr virus encoded inhibitor of Colony Stimulating Factor-1 signaling is an important determinant for acute and persistent EBV infection.
        PLoS pathogens. 2012; 8e1003095
        • Hoebe E.K.
        • Le Large T.Y.
        • Greijer A.E.
        • Middeldorp J.M.
        BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator.
        Reviews in medical virology. 2013; 23: 367-383
        • Nagata H.
        • Konno A.
        • Kimura N.
        • Zhang Y.
        • Kimura M.
        • Demachi A.
        • Sekine T.
        • Yamamoto K.
        • Shimizu N.
        Characterization of novel natural killer (NK)-cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with the Epstein-Barr virus.
        Blood. 2001; 97: 708-713
        • Zhang Y.
        • Nagata H.
        • Ikeuchi T.
        • Mukai H.
        • Oyoshi M.K.
        • Demachi A.
        • Morio T.
        • Wakiguchi H.
        • Kimura N.
        • Shimizu N.
        • Yamamoto K.
        Common cytological and cytogenetic features of Epstein-Barr virus (EBV)-positive natural killer (NK) cells and cell lines derived from patients with nasal T/NK-cell lymphomas, chronic active EBV infection and hydroa vacciniforme-like eruptions.
        British journal of haematology. 2003; 121: 805-814
        • Rooney C.M.
        • Smith C.A.
        • Ng C.Y.C.
        • Loftin S.K.
        • Sixbey J.W.
        • Gan Y.-J.
        • Srivastava D.-K.
        • Bowman L.C.
        • Krance R.A.
        • Brenner M.K.
        • Heslop H.E.
        Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients.
        Blood. 1998; 92: 1549-1555
        • Ngo M.C.
        • Ando J.
        • Leen A.M.
        • Ennamuri S.
        • Lapteva N.
        • Vera J.F.
        • Min-Venditti A.
        • Mims M.P.
        • Heslop H.E.
        • Bollard C.M.
        • Gottschalk S.
        • Rooney C.M.
        Complementation of Antigen-presenting Cells to Generate T Lymphocytes With Broad Target Specificity.
        J. Immunother. 2014; 37: 193-203
        • Gerdemann U.
        • Katari U.
        • Christin A.S.
        • Cruz C.R.
        • Tripic T.
        • Rousseau A.
        • Gottschalk S.M.
        • Savoldo B.
        • Vera J.F.
        • Heslop H.E.
        • Brenner M.K.
        • Bollard C.M.
        • Rooney C.M.
        • Leen A.M.
        Cytotoxic T Lymphocytes Simultaneously Targeting Multiple Tumor-associated Antigens to Treat EBV Negative Lymphoma.
        Mol. Ther. 2011; 19: 2258-2268
        • Seto E.
        • Yang L.
        • Middeldorp J.
        • Sheen T.S.
        • Chen J.Y.
        • Fukayama M.
        • Eizuru Y.
        • Ooka T.
        • Takada K.
        Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression.
        Journal of medical virology. 2005; 76: 82-88
        • Louis C.U.
        • Straathof K.
        • Bollard C.M.
        • Gerken C.
        • Huls M.H.
        • Gresik M.V.
        • Wu M.F.
        • Weiss H.L.
        • Gee A.P.
        • Brenner M.K.
        • Rooney C.M.
        • Heslop H.E.
        • Gottschalk S.
        Enhancing the in vivo expansion of adoptively transferred EBV-specific CTL with lymphodepleting CD45 monoclonal antibodies in NPC patients.
        Blood. 2009; 113: 2442-2450
        • Shaffer D.R.
        • Savoldo B.
        • Yi Z.
        • Chow K.K.
        • Kakarla S.
        • Spencer D.M.
        • Dotti G.
        • Wu M.F.
        • Liu H.
        • Kenney S.
        • Gottschalk S.
        T cells redirected against CD70 for the immunotherapy of CD70-positive malignancies.
        Blood. 2011; 117: 4304-4314
        • Icheva V.
        • Kayser S.
        • Wolff D.
        • Tuve S.
        • Kyzirakos C.
        • Bethge W.
        • Greil J.
        • Albert M.H.
        • Schwinger W.
        • Nathrath M.
        • Schumm M.
        • Stevanovic S.
        • Handgretinger R.
        • Lang P.
        • Feuchtinger T.
        Adoptive transfer of epstein-barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation.
        J. Clin. Oncol. 2013; 31: 39-48
        • Rosalia R.A.
        • Quakkelaar E.D.
        • Redeker A.
        • Khan S.
        • Camps M.
        • Drijfhout J.W.
        • Silva A.L.
        • Jiskoot W.
        • van Hall T.
        • van Veelen P.A.
        • Janssen G.
        • Franken K.
        • Cruz L.J.
        • Tromp A.
        • Oostendorp J.
        • van der Burg S.H.
        • Ossendorp F.
        • Melief C.J.
        Dendritic cells process synthetic long peptides better than whole protein, improving antigen presentation and T-cell activation.
        European journal of immunology. 2013; 43: 2554-2565