Rapid Communication| Volume 19, ISSUE 12, P1522-1528, December 2017

Download started.


Cell density, dimethylsulfoxide concentration and needle gauge affect hydrogel-induced bone marrow mesenchymal stromal cell viability

Published:October 04, 2017DOI:


      Mesenchymal stromal cells (MSCs) have shown potential therapeutic benefits for a range of medical disorders and continue to be a focus of intense scientific investigation. Transplantation of MSCs into injured tissue can improve wound healing, tissue regeneration and functional recovery. However, implanted cells rapidly lose their viability or fail to integrate into host tissue. Hydrogel-seeded bone marrow (BM)-MSCs offer improved viability in response to mechanical forces caused by syringe needles, cell density and dimethylsulfoxide (DMSO) concentration, which in turn, will help to clarify which factors are important for enhancing biomaterial-induced cell transplantation efficiency and provide much needed guidance for clinical trials. In this study, under the control of cell density (<2 × 107 cells/mL) and final DMSO concentration (<0.5%), hydrogel-induced BM-MSC viability remained >82% following syringe needle passage by 25- or 27-gauge needles, providing improved cell therapeutic approaches for regenerative medicine.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Karussis D.
        • Karageorgiou C.
        • Vaknin-Dembinsky A.
        • Gowda-Kurkalli B.
        • Gomori J.M.
        • Kassis I.
        • et al.
        Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis.
        Arch Neurol. 2010; 67: 1187-1194
        • Malgieri A.
        • Kantzari E.
        • Patrizi M.P.
        • Gambardella S.
        Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art.
        Int J Clin Exp Med. 2010; 3: 248-269
        • Molcanyi M.
        • Riess P.
        • Bentz K.
        • Maegele M.
        • Hescheler J.
        • Schafke B.
        • et al.
        Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain.
        J Neurotrauma. 2007; 24: 625-632
        • Dai W.
        • Hale S.L.
        • Kay G.L.
        • Jyrala A.J.
        • Kloner R.A.
        Delivering stem cells to the heart in a collagen matrix reduces relocation of cells to other organs as assessed by nanoparticle technology.
        Regen Med. 2009; 4: 387-395
        • Zheng Shu X.
        • Liu Y.
        • Palumbo F.S.
        • Luo Y.
        • Prestwich G.D.
        In situ crosslinkable hyaluronan hydrogels for tissue engineering.
        Biomaterials. 2004; 25: 1339-1348
        • Dobner S.
        • Bezuidenhout D.
        • Govender P.
        • Zilla P.
        • Davies N.
        A synthetic non-degradable polyethylene glycol hydrogel retards adverse post-infarct left ventricular remodeling.
        J Card Fail. 2009; 15: 629-636
        • Johnson B.Q.
        • Fox R.
        • Chen X.
        • Thibeault S.
        Tissue regeneration of the vocal fold using bone marrow mesenchymal stem cells and synthetic extracellular matrix injections in rats.
        Laryngoscope. 2010; 120: 537-545
        • Stacey G.N.
        • Dowall S.
        Cryopreservation of primary animal cell cultures.
        Methods Mol Biol. 2007; 368: 271-281
        • Davies O.G.
        • Smith A.J.
        • Cooper P.R.
        • Shelton R.M.
        • Scheven B.A.
        The effects of cryopreservation on cells isolated from adipose, bone marrow and dental pulp tissues.
        Cryobiology. 2014; 69: 342-347
        • Pal R.
        • Mamidi M.K.
        • Das A.K.
        • Bhonde R.
        Diverse effects of dimethyl sulfoxide (DMSO) on the differentiation potential of human embryonic stem cells.
        Arch Toxicol. 2012; 86: 651-661
        • Park C.H.
        • Martinez B.C.
        Enhanced release of rosmarinic acid from Coleus blumei permeabilized by dimethyl sulfoxide (DMSO) while preserving cell viability and growth.
        Biotechnol Bioeng. 1992; 40: 459-464
        • Ock S.A.
        • Rho G.J.
        Effect of dimethyl sulfoxide (DMSO) on cryopreservation of porcine mesenchymal stem cells (pMSCs).
        Cell Transplant. 2011; 20: 1231-1239
        • Veeraputhiran M.
        • Theus J.W.
        • Pesek G.
        • Barlogie B.
        • Cottler-Fox M.
        Viability and engraftment of hematopoietic progenitor cells after long-term cryopreservation: effect of diagnosis and percentage dimethyl sulfoxide concentration.
        Cytotherapy. 2010; 12: 764-766
        • Massie I.
        • Selden C.
        • Hodgson H.
        • Fuller B.
        • Gibbons S.
        • Morris G.J.
        GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process.
        Tissue Eng Part C Methods. 2014; 20: 693-702
        • Jaatinen T.
        • Laine J.
        Isolation of mononuclear cells from human cord blood by Ficoll-Paque density gradient.
        Curr Protoc Stem Cell Biol. 2007; Chapter 2: Unit 2A.1
        • Onishi K.
        • Jones D.L.
        • Riester S.M.
        • Lewallen E.A.
        • Lewallen D.G.
        • Sellon J.L.
        • et al.
        Human adipose- derived mesenchymal stromal/stem cells remain viable and metabolically active following needle passage.
        PM R. 2016; 8: 844-854
        • Hare J.M.
        • Traverse J.H.
        • Henry T.D.
        • Dib N.
        • Strumpf R.K.
        • Schulman S.P.
        • et al.
        A randomized, double- blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.
        J Am Coll Cardiol. 2009; 54: 2277-2286
        • El Tamer M.K.
        • Reis R.L.
        Progenitor and stem cells for bone and cartilage regeneration.
        J Tissue Eng Regen Med. 2009; 3: 327-337
        • Hertegard S.
        • Cedervall J.
        • Svensson B.
        • Forsberg K.
        • Maurer F.H.
        • Vidovska D.
        • et al.
        Viscoelastic and histologic properties in scarred rabbit vocal folds after mesenchymal stem cell injection.
        Laryngoscope. 2006; 116: 1248-1254
        • Cedervall J.
        • Ahrlund-Richter L.
        • Svensson B.
        • Forsgren K.
        • Maurer F.H.
        • Vidovska D.
        • et al.
        Injection of embryonic stem cells into scarred rabbit vocal folds enhances healing and improves viscoelasticity: short-term results.
        Laryngoscope. 2007; 117: 2075-2081
        • Madden L.R.
        • Mortisen D.J.
        • Sussman E.M.
        • Dupras S.K.
        • Fugate J.A.
        • Cuy J.L.
        • et al.
        Proangiogenic scaffolds as functional templates for cardiac tissue engineering.
        Proc Natl Acad Sci USA. 2010; 107: 15211-15216
        • Guilak F.
        • Cohen D.M.
        • Estes B.T.
        • Gimble J.M.
        • Liedtke W.
        • Chen C.S.
        Control of stem cell fate by physical interactions with the extracellular matrix.
        Cell Stem Cell. 2009; 5: 17-26
        • Aguado B.A.
        • Mulyasasmita W.
        • Su J.
        • Lampe K.J.
        • Heilshorn S.C.
        Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers.
        Tissue Eng Part A. 2012; 18: 806-815
        • Ciapetti G.
        • Granchi D.
        • Baldini N.
        The combined use of mesenchymal stromal cells and scaffolds for bone repair.
        Curr Pharm Des. 2012; 18: 1796-1820
        • Thibeault S.L.
        • Klemuk S.A.
        • Chen X.
        • Quinchia Johnson B.H.
        In vivo engineering of the vocal fold ECM with injectable HA hydrogels-late effects on tissue repair and biomechanics in a rabbit model.
        J Voice. 2010; 25: 249-253
        • Caton T.
        • Thibeault S.L.
        • Klemuk S.
        • Smith M.E.
        Viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: implications for mucosal versus muscle use.
        Laryngoscope. 2007; 117: 516-521
        • Duflo S.
        • Thibeault S.L.
        • Li W.
        • Shu X.Z.
        • Prestwich G.D.
        Vocal fold tissue repair in vivo using a synthetic extracellular matrix.
        Tissue Eng. 2006; 12: 2171-2180
        • Schallmoser K.
        • Rohde E.
        • Reinisch A.
        • Bartmann C.
        • Thaler D.
        • Drexler C.
        • et al.
        Rapid large-scale expansion of functional mesenchymal stem cells from unmanipulated bone marrow without animal serum.
        Tissue Eng Part C Methods. 2008; 14: 185-196
        • Stephan S.
        • Johnson W.E.
        • Roberts S.
        The influence of nutrient supply and cell density on the growth and survival of intervertebral disc cells in 3D culture.
        Eur Cell Mater. 2011; 22: 97-108
        • Sotiropoulou P.A.
        • Perez S.A.
        • Salagianni M.
        • Baxevanis C.N.
        • Papamichail M.
        Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells.
        Stem Cells. 2006; 24: 462-471
        • He J.
        • Wang C.
        • Sun Y.
        • Lu B.
        • Cui J.
        • Dong N.
        • et al.
        Exendin-4 protects bone marrow-derived mesenchymal stem cells against oxygen/glucose and serum deprivation-induced apoptosis through the activation of the cAMP/PKA signaling pathway and the attenuation of ER stress.
        Int J Mol Med. 2016; 37: 889-900
        • Zhou H.
        • Li D.
        • Shi C.
        • Xin T.
        • Yang J.
        • Zhou Y.
        • et al.
        Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro.
        Sci Rep. 2015; 5: 12898
        • Schmidt A.J.
        • Lee J.M.
        • An G.
        Media and environmental effects on phenolics production from tobacco cell cultures.
        Biotechnol Bioeng. 1989; 33: 1437-1444
        • Lang H.M.
        • Schnabel L.V.
        • Cassano J.M.
        • Fortier L.A.
        Effect of needle diameter on the viability of equine bone marrow derived mesenchymal stem cells.
        Vet Surg. 2017; 46: 731-737