Advertisement

Cell therapy in critical limb ischemia: A comprehensive analysis of two cell therapy products

  • Claire Tournois
    Affiliations
    Laboratoire d'Hématologie, Centre Hospitalier Universitaire Robert Debré, Reims, France

    Equipe d'accueil de recherche, Structure Fédératrice de Recherche Champagne Ardenne Picardie-Santé, Université de Reims Champagne-Ardenne, Reims, France
    Search for articles by this author
  • Bernard Pignon
    Affiliations
    Unité de Thérapie Cellulaire, Centre Hospitalier Universitaire, Reims, France
    Search for articles by this author
  • Marie-Antoinette Sevestre
    Affiliations
    Service de Médecine Vasculaire, Centre Hospitalier Universitaire, Amiens, France
    Search for articles by this author
  • Rida Al-Rifai
    Affiliations
    Equipe d'accueil de recherche, Structure Fédératrice de Recherche Champagne Ardenne Picardie-Santé, Université de Reims Champagne-Ardenne, Reims, France
    Search for articles by this author
  • Valerie Creuza
    Affiliations
    Laboratoire d'Hématologie, Centre Hospitalier Universitaire Robert Debré, Reims, France
    Search for articles by this author
  • Gaël Poitevin
    Affiliations
    Equipe d'accueil de recherche, Structure Fédératrice de Recherche Champagne Ardenne Picardie-Santé, Université de Reims Champagne-Ardenne, Reims, France
    Search for articles by this author
  • Caroline François
    Affiliations
    Equipe d'accueil de recherche, Structure Fédératrice de Recherche Champagne Ardenne Picardie-Santé, Université de Reims Champagne-Ardenne, Reims, France
    Search for articles by this author
  • Philippe Nguyen
    Correspondence
    Correspondence: Philippe Nguyen, MD, PhD, Equipe d'accueil de recherche, Structure Fédératrice de Recherche Champagne Ardenne Picardie-Santé, Laboratoire d'Hématologie, Centre Hospitalier Universitaire Reims, Hôpital Robert-Debré, 51092 Reims Cedex, France.
    Affiliations
    Laboratoire d'Hématologie, Centre Hospitalier Universitaire Robert Debré, Reims, France

    Equipe d'accueil de recherche, Structure Fédératrice de Recherche Champagne Ardenne Picardie-Santé, Université de Reims Champagne-Ardenne, Reims, France
    Search for articles by this author
Published:December 01, 2016DOI:https://doi.org/10.1016/j.jcyt.2016.10.013

      Abstract

      Background

      Cell therapy has been proposed as a salvage limb procedure in critical limb ischemia (CLI). In spite of the fact that clinical trials found some efficacy, the mechanism of action remains elusive. The objective of this study was to characterize two autologous cell therapy products (CTPs) obtained from patients with advanced peripheral arterial disease.

      Methods

      Bone marrow (BM-CTPs) (n = 20) and CTPs obtained by non-mobilized cytapheresis (peripheral blood [PB]-CTPs) (n = 20) were compared. CTPs were characterized by their cell composition, by the quantification of endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs) and by transcriptomic profiling. The angiogenic profile and the 6-month outcome of CLI patients are described.

      Results

      Patients presented inflammation syndrome and high levels of CXCL12, soluble stem cell factor and granulocyte colony-stimulating factor, whereas granulocyte macrophage colony-stimulating factor was low. Circulating CD34+ cells represented rare events. BM and PB-CTPs were heterogeneous. Mature cells and colony-forming unit–endothelial cells were in higher concentration in PB-CTPs, whereas CD34+ stem cells and EPCs were more abundant in BM-CTPs. MSCs were identified in both CTPs. Transcriptomic profiling revealed the strong angiogenic potential of BM-CTPs. Transcutaneous partial pressure of oxygen, C-reative protein and neutrophil content in CTPs are predictive of the clinical outcome at 6 months.

      Discussion

      Transcriptomic allows an accurate characterization of CTPs. BM-CTPs have the richest content in terms of stem cells and transcriptome. The high content of mature cells in PB-CTPs means that they work via a paracrine mechanism. The clinical outcome indicates the deleterious influence the patients' status and the limits of an autologous approach. In this respect, MSCs may allow an allogenic strategy.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Norgren L.
        • Hiatt W.R.
        • Dormandy J.A.
        • Nehler M.R.
        • Harris K.A.
        • Fowkes F.G.
        • et al.
        Inter-society consensus for the management of peripheral arterial disease (TASC II).
        Eur J Vasc Endovasc Surg. 2007; 33: S1-75
        • Tateishi-Yuyama E.
        • Matsubara H.
        • Murohara T.
        • Ikeda U.
        • Shintani S.
        • Masaki H.
        • et al.
        Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial.
        Lancet. 2002; 360: 427-435
        • Ai M.
        • Yan C.F.
        • Xia F.C.
        • Zhou S.L.
        • He J.
        • Li C.P.
        Safety and efficacy of cell-based therapy on critical limb ischemia: a meta-analysis.
        Cytotherapy. 2016; 18: 712-724
        • Liew A.
        • Bhattacharya V.
        • Shaw J.
        • Stansby G.
        Cell therapy for critical limb ischemia: a meta-analysis of randomized controlled trials.
        Angiology. 2016; 67: 444-455
        • Benoit E.
        • O'Donnell T.F.
        • Patel A.N.
        Safety and efficacy of autologous cell therapy in critical limb ischemia: a systematic review.
        Cell Transplant. 2013; 22: 545-562
        • Wang Z.X.
        • Li D.
        • Cao J.X.
        • Liu Y.S.
        • Wang M.
        • Zhang X.Y.
        • et al.
        Efficacy of autologous bone marrow mononuclear cell therapy in patients with peripheral arterial disease.
        J Atheroscler Thromb. 2014; 21: 1183-1196
        • Tournois C.
        • Pignon B.
        • Sevestre M.A.
        • Djerada Z.
        • Capiod J.C.
        • Poitevin G.
        • et al.
        Critical limb ischemia: thrombogenic evaluation of two autologous cell therapy products and biologic profile in treated patients.
        Transfusion. 2015; 55: 2692-2701
        • Capiod J.C.
        • Tournois C.
        • Vitry F.
        • Sevestre M.A.
        • Daliphard S.
        • Reix T.
        • et al.
        Characterization and comparison of bone marrow and peripheral blood mononuclear cells used for cellular therapy in critical leg ischaemia: towards a new cellular product.
        Vox Sang. 2009; 96: 256-265
        • Sutherland D.R.
        • Anderson L.
        • Keeney M.
        • Nayar R.
        • Chin-Yee I.
        The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering.
        J Hematother. 1996; 5: 213-226
        • Peichev M.
        • Naiyer A.J.
        • Pereira D.
        • Zhu Z.
        • Lane W.J.
        • Williams M.
        • et al.
        Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors.
        Blood. 2000; 95: 952-958
        • Hill J.M.
        • Zalos G.
        • Halcox J.P.
        • Schenke W.H.
        • Waclawiw M.A.
        • Quyyumi A.A.
        • et al.
        Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.
        N Engl J Med. 2003; 348: 593-600
        • Friedenstein A.J.
        • Gorskaja J.F.
        • Kulagina N.N.
        Fibroblast precursors in normal and irradiated mouse hematopoietic organs.
        Exp Hematol. 1976; 4: 267-274
        • Poitevin S.
        • Garnotel R.
        • Antonicelli F.
        • Gillery P.
        • Nguyen P.
        Type I collagen induces tissue factor expression and matrix metalloproteinase 9 production in human primary monocytes through a redox-sensitive pathway.
        J Thromb Haemost. 2008; 6: 1586-1594
        • Cuccuini W.
        • Poitevin S.
        • Poitevin G.
        • Dignat-George F.
        • Cornillet-Lefebvre P.
        • Sabatier F.
        • et al.
        Tissue factor up-regulation in proinflammatory conditions confers thrombin generation capacity to endothelial colony-forming cells without influencing non-coagulant properties in vitro.
        J Thromb Haemost. 2010; 8: 2042-2052
        • Vandesompele J.
        • De Preter K.
        • Pattyn F.
        • Poppe B.
        • Van Roy N.
        • De Paepe A.
        • et al.
        Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.
        Genome Biol. 2002; 3: 1-12
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.
        Methods. 2001; 25: 402-408
        • Willems E.
        • Leyns L.
        • Vandesompele J.
        Standardization of real-time PCR gene expression data from independent biological replicates.
        Anal Biochem. 2008; 379: 127-129
        • Smyth G.K.
        Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
        Stat Appl Genet Mol Biol. 2004; 3 (Article3; Epub 2004 Feb 12)
        • Peeters Weem S.M.
        • Teraa M.
        • de Borst G.J.
        • Verhaar M.C.
        • Moll F.L.
        Bone marrow derived cell therapy in critical limb ischemia: a meta-analysis of randomized placebo controlled trials.
        Eur J Vasc Endovasc Surg. 2015; 50: 775-783
        • Dimmeler S.
        • Leri A.
        Aging and disease as modifiers of efficacy of cell therapy.
        Circ Res. 2008; 102: 1319-1330
        • Hung H.S.
        • Shyu W.C.
        • Tsai C.H.
        • Hsu S.H.
        • Lin S.Z.
        Transplantation of endothelial progenitor cells as therapeutics for cardiovascular diseases.
        Cell Transplant. 2009; 18: 1003-1012
        • Lawall H.
        • Bramlage P.
        • Amann B.
        Stem cell and progenitor cell therapy in peripheral artery disease. A critical appraisal.
        Thromb Haemost. 2010; 103: 696-709
        • Fadini G.P.
        • de Kreutzenberg S.V.
        • Coracina A.
        • Baesso I.
        • Agostini C.
        • Tiengo A.
        • et al.
        Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk.
        Eur Heart J. 2006; 27: 2247-2255
        • Teraa M.
        • Sprengers R.W.
        • Westerweel P.E.
        • Gremmels H.
        • Goumans M.J.
        • Teerlink T.
        • et al.
        Bone marrow alterations and lower endothelial progenitor cell numbers in critical limb ischemia patients.
        PLoS ONE. 2013; 8: e55592
        • Makin A.J.
        • Chung N.A.
        • Silverman S.H.
        • Lip G.Y.
        Vascular endothelial growth factor and tissue factor in patients with established peripheral artery disease: a link between angiogenesis and thrombogenesis?.
        Clin Sci. 2003; 104: 397-404
        • Silvestre J.S.
        • Smadja D.M.
        • Levy B.I.
        Postischemic revascularization: from cellular and molecular mechanisms to clinical applications.
        Physiol Rev. 2013; 93: 1743-1802
        • Domanchuk K.
        • Ferrucci L.
        • Guralnik J.M.
        • Criqui M.H.
        • Tian L.
        • Liu K.
        • et al.
        Progenitor cell release plus exercise to improve functional performance in peripheral artery disease: the PROPEL Study.
        Contemp Clin Trials. 2013; 36: 502-509
        • Sugihara S.
        • Yamamoto Y.
        • Matsubara K.
        • Ishida K.
        • Matsuura T.
        • Ando F.
        • et al.
        Autoperipheral blood mononuclear cell transplantation improved giant ulcers due to chronic arteriosclerosis obliterans.
        Heart Vessels. 2006; 21: 258-262
        • Kondo T.
        • Suzuki S.
        • Izawa H.
        • Kobayashi M.
        • Emi N.
        • et al.
        • Yamamoto K
        Molecular evaluation of endothelial progenitor cells in patients with ischemic limbs: therapeutic effect by stem cell transplantation.
        Arterioscler Thromb Vasc Biol. 2004; 24: e192-6
        • Lasala G.P.
        • Silva J.A.
        • Gardner P.A.
        • Minguell J.J.
        Combination stem cell therapy for the treatment of severe limb ischemia: safety and efficacy analysis.
        Angiology. 2010; 61: 551-556
        • Teraa M.
        • Sprengers R.W.
        • van der Graaf Y.
        • Peters C.E.
        • Moll F.L.
        • Verhaar M.C.
        Autologous bone marrow-derived cell therapy in patients with critical limb ischemia: a meta-analysis of randomized controlled clinical trials.
        Ann Surg. 2013; 258: 922-929
        • Asahara T.
        • Murohara T.
        • Sullivan A.
        • Silver M.
        • van der Zee R.
        • Li T.
        • et al.
        Isolation of putative progenitor endothelial cells for angiogenesis.
        Science. 1997; 275: 964-967
        • Asahara T.
        • Kawamoto A.
        • Masuda H.
        Concise review: circulating endothelial progenitor cells for vascular medicine.
        Stem Cells. 2011; 29: 1650-1655
        • Yoon C.H.
        • Hur J.
        • Park K.W.
        • Kim J.H.
        • Lee C.S.
        • Oh I.Y.
        • et al.
        Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases.
        Circulation. 2005; 112: 1618-1627
        • Hur J.
        • Yoon C.H.
        • Kim H.S.
        • Choi J.H.
        • Kang H.J.
        • Hwang K.K.
        • et al.
        Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.
        Arterioscler Thromb Vasc Biol. 2004; 24: 288-293
        • Caplan A.I.
        Adult mesenchymal stem cells for tissue engineering versus regenerative medicine.
        J Cell Physiol. 2007; 213: 341-347
        • Rehman J.
        • Li J.
        • Orschell C.M.
        • March K.L.
        Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors.
        Circulation. 2003; 107: 1164-1169
        • Hur J.
        • Yang H.M.
        • Yoon C.H.
        • Lee C.S.
        • Park K.W.
        • Kim J.H.
        • et al.
        Identification of a novel role of T cells in postnatal vasculogenesis: characterization of endothelial progenitor cell colonies.
        Circulation. 2007; 116: 1671-1682
        • Stellos K.
        • Gawaz M.
        Platelet interaction with progenitor cells: potential implications for regenerative medicine.
        Thromb Haemost. 2007; 98: 922-929
        • Nurden A.T.
        Platelets, inflammation and tissue regeneration.
        Thromb Haemost. 2011; 105: S13-33
        • Iba O.
        • Matsubara H.
        • Nozawa Y.
        • Fujiyama S.
        • Amano K.
        • Mori Y.
        • et al.
        Angiogenesis by implantation of peripheral blood mononuclear cells and platelets into ischemic limbs.
        Circulation. 2002; 106: 2019-2025
        • Oda M.
        • Toba K.
        • Kato K.
        • Ozawa T.
        • Yanagawa T.
        • Ikarashi N.
        • et al.
        Hypocellularity and insufficient expression of angiogenic factors in implanted autologous bone marrow in patients with chronic critical limb ischemia.
        Heart Vessels. 2012; 27: 38-45
        • Fadini G.P.
        • Avogaro A.
        • Agostini C.
        Critical assessment of putative endothelial progenitor phenotypes.
        Exp Hematol. 2007; 35: 1479-1480
        • Geiger H.
        • Denkinger M.
        • Schirmbeck R.
        Hematopoietic stem cell aging.
        Curr Opin Immunol. 2014; 29: 86-92
        • Childs B.G.
        • Durik M.
        • Baker D.J.
        • van Deursen J.M.
        Cellular senescence in aging and age-related disease: from mechanisms to therapy.
        Nat Med. 2015; 21: 1424-1435
        • Fan Y.
        • Ye J.
        • Shen F.
        • Zhu Y.
        • Yeghiazarians Y.
        • Zhu W.
        • et al.
        Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro.
        J Cereb Blood Flow Metab. 2008; 28: 90-98
        • Tousoulis D.
        • Andreou I.
        • Antoniades C.
        • Tentolouris C.
        • Stefanadis C.
        Role of inflammation and oxidative stress in endothelial progenitor cell function and mobilization: therapeutic implications for cardiovascular diseases.
        Atherosclerosis. 2008; 201: 236-247
        • Suzuki J.
        • Shimamura M.
        • Suda H.
        • Wakayama K.
        • Kumagai H.
        • Ikeda Y.
        • et al.
        Current therapies and investigational drugs for peripheral arterial disease.
        Hypertens Res. 2016; 39: 183-191
        • El Omar R.
        • Xiong Y.
        • Dostert G.
        • Louis H.
        • Gentils M.
        • Menu P.
        • et al.
        Immunomodulation of endothelial differentiated mesenchymal stromal cells: impact on T and NK cells.
        Immunol Cell Biol. 2016; 94: 342-356