Advertisement

Engineering hematopoietic stem cells toward a functional cure of human immunodeficiency virus infection

      Abstract

      The battle with human immunodeficiency virus (HIV) has been ongoing for more than 30 years, and although progress has been made, there are still significant challenges remaining. A few unique features render HIV to be one of the toughest viruses to conquer in the modern medicine era, such as the ability to target the host immune system, persist by integrating into the host genome and adapt to a hostile environment such as a single anti-HIV medication by continuously evolving. The finding of combination anti-retroviral therapy (cART) about 2 decades ago has transformed the treatment options for HIV-infected patients and significantly improved patient outcomes. However, finding an HIV cure has proven to be extremely challenging with the only known exception being the so-called “Berlin patient,” whose immune system was replaced by stem cell transplants from a donor missing one of HIV's key co-receptors (CCR5). The broad application of this approach is limited by the requirement of an HLA-matched donor who is also homozygous for the rare CCR5 delta32 deletion. On the other hand, the Berlin patient provided the proof of concept of a potential cure for HIV using HIV-resistant hematopoietic stem cells (HSCs), revitalizing the hope to find an HIV cure that is broadly applicable. Here we will review strategies and recent attempts to engineer HIV-resistant HSCs as a path to an HIV cure.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gulick R.M.
        • Mellors J.W.
        • Havlir D.
        • Eron J.J.
        • Gonzalez C.
        • McMahon D.
        • et al.
        Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy.
        N Engl J Med. 1997; 337: 734-739
        • Deeks S.G.
        • Lewin S.R.
        • Havlir D.V.
        The end of AIDS: HIV infection as a chronic disease.
        Lancet. 2013; 382: 1525-1533
        • Siliciano J.D.
        • Kajdas J.
        • Finzi D.
        • Quinn T.C.
        • Chadwick K.
        • Margolick J.B.
        • et al.
        Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells.
        Nat Med. 2003; 9: 727-728
        • Svicher V.
        • Ceccherini-Silberstein F.
        • Antinori A.
        • Aquaro S.
        • Perno C.F.
        Understanding HIV compartments and reservoirs.
        Curr HIV/AIDS Rep. 2014; 11: 186-194
        • Ho Y.C.
        • Shan L.
        • Hosmane N.N.
        • Wang J.
        • Laskey S.B.
        • Rosenbloom D.I.
        • et al.
        Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure.
        Cell. 2013; 155: 540-551
        • Hutter G.
        • Nowak D.
        • Mossner M.
        • Ganepola S.
        • Mussig A.
        • Allers K.
        • et al.
        Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation.
        N Engl J Med. 2009; 360: 692-698
        • Allers K.
        • Hutter G.
        • Hofmann J.
        • Loddenkemper C.
        • Rieger K.
        • Thiel E.
        • et al.
        Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation.
        Blood. 2011; 117: 2791-2799
        • de Goede A.L.
        • Vulto A.G.
        • Osterhaus A.D.
        • Gruters R.A.
        Understanding HIV infection for the design of a therapeutic vaccine. Part I: epidemiology and pathogenesis of HIV infection.
        Ann Pharm Fr. 2015; 73: 87-99
        • Arts E.J.
        • Hazuda D.J.
        HIV-1 antiretroviral drug therapy.
        Cold Spring Harb Perspect Med. 2012; 2,: a007161
        • Abbas W.
        • Tariq M.
        • Iqbal M.
        • Kumar A.
        • Herbein G.
        Eradication of HIV-1 from the macrophage reservoir: an uncertain goal?.
        Viruses. 2015; 7: 1578-1598
        • Bruner K.M.
        • Hosmane N.N.
        • Siliciano R.F.
        Towards an HIV-1 cure: measuring the latent reservoir.
        Trends Microbiol. 2015; 23: 192-203
        • Chun T.W.
        • Moir S.
        • Fauci A.S.
        HIV reservoirs as obstacles and opportunities for an HIV cure.
        Nat Immunol. 2015; 16: 584-589
        • Deeks S.G.
        • Autran B.
        • Berkhout B.
        • Benkirane M.
        • Cairns S.
        • et al.
        • International AIDS Society Scientific Working Group on HIV Cure
        Towards an HIV cure: a global scientific strategy.
        Nat Rev Immunol. 2012; 12: 607-614
        • Rainwater-Lovett K.
        • Luzuriaga K.
        • Persaud D.
        Very early combination antiretroviral therapy in infants: prospects for cure.
        Curr Opin HIV AIDS. 2015; 10: 4-11
        • Liu R.
        • Paxton W.A.
        • Choe S.
        • Ceradini D.
        • Martin S.R.
        • Horuk R.
        • et al.
        Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection.
        Cell. 1996; 86: 367-377
        • Martinson J.J.
        • Chapman N.H.
        • Rees D.C.
        • Liu Y.T.
        • Clegg J.B.
        Global distribution of the CCR5 gene 32-basepair deletion.
        Nat Genet. 1997; 16: 100-103
        • Henrich T.J.
        • Hu Z.
        • Li J.Z.
        • Sciaranghella G.
        • Busch M.P.
        • Keating S.M.
        • et al.
        Long-term reduction in peripheral blood HIV type 1 reservoirs following reduced-intensity conditioning allogeneic stem cell transplantation.
        J Infect Dis. 2013; 207: 1694-1702
        • Henrich T.J.
        • Hanhauser E.
        • Marty F.M.
        • Sirignano M.N.
        • Keating S.
        • Lee T.H.
        • et al.
        Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases.
        Ann Intern Med. 2014; 161: 319-327
        • Persaud D.
        • Gay H.
        • Ziemniak C.
        • Chen Y.H.
        • Piatak Jr, M.
        • Chun T.W.
        • et al.
        Absence of detectable HIV-1 viremia after treatment cessation in an infant.
        N Engl J Med. 2013; 369: 1828-1835
        • Saez-Cirion A.
        • Bacchus C.
        • Hocqueloux L.
        • Avettand-Fenoel V.
        • Girault I.
        • Lecuroux C.
        • et al.
        Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study.
        PLoS Pathog. 2013; 9: e1003211
        • Luzuriaga K.
        • Gay H.
        • Ziemniak C.
        • Sanborn K.B.
        • Somasundaran M.
        • Rainwater-Lovett K.
        • et al.
        Viremic relapse after HIV-1 remission in a perinatally infected child.
        N Engl J Med. 2015; 372: 786-788
        • Archin N.M.
        • Margolis D.M.
        Emerging strategies to deplete the HIV reservoir.
        Curr Opin Infect Dis. 2014; 27: 29-35
        • Kumar A.
        • Darcis G.
        • Van Lint C.
        • Herbein G.
        Epigenetic control of HIV-1 post integration latency: implications for therapy.
        Clin Epigenetics. 2015; 7: 103
        • Liu C.
        • Ma X.
        • Liu B.
        • Chen C.
        • Zhang H.
        HIV-1 functional cure: will the dream come true?.
        BMC Med. 2015; 13: 284
        • Bullen C.K.
        • Laird G.M.
        • Durand C.M.
        • Siliciano J.D.
        • Siliciano R.F.
        New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo.
        Nat Med. 2014; 20: 425-429
        • Barouch D.H.
        • Deeks S.G.
        Immunologic strategies for HIV-1 remission and eradication.
        Science. 2014; 345: 169-174
        • Smith P.L.
        • Tanner H.
        • Dalgleish A.
        Developments in HIV-1 immunotherapy and therapeutic vaccination.
        F1000Prime Rep. 2014; 6: 43
        • Kamphorst A.O.
        • Ahmed R.
        CD4 T-cell immunotherapy for chronic viral infections and cancer.
        Immunotherapy. 2013; 5: 975-987
        • Okoye A.A.
        • Picker L.J.
        CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure.
        Immunol Rev. 2013; 254: 54-64
        • Paiardini M.
        • Muller-Trutwin M.
        HIV-associated chronic immune activation.
        Immunol Rev. 2013; 254: 78-101
        • Mehandru S.
        • Poles M.A.
        • Tenner-Racz K.
        • Horowitz A.
        • Hurley A.
        • Hogan C.
        • et al.
        Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract.
        J Exp Med. 2004; 200: 761-770
        • Ussher J.E.
        • Klenerman P.
        • Willberg C.B.
        Mucosal-associated invariant T-cells: new players in anti-bacterial immunity.
        Front Immunol. 2014; 5: 450
        • Valverde-Villegas J.M.
        • Matte M.C.
        • de Medeiros R.M.
        • Chies J.A.
        New insights about treg and Th17 cells in HIV infection and disease progression.
        J Immunol Res. 2015; 2015 (647916)
        • Perez E.E.
        • Wang J.
        • Miller J.C.
        • Jouvenot Y.
        • Kim K.A.
        • Liu O.
        • et al.
        Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases.
        Nat Biotechnol. 2008; 26: 808-816
        • Holt N.
        • Wang J.
        • Kim K.
        • Friedman G.
        • Wang X.
        • Taupin V.
        • et al.
        Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo.
        Nat Biotechnol. 2010; 28: 839-847
        • Wilen C.B.
        • Wang J.
        • Tilton J.C.
        • Miller J.C.
        • Kim K.A.
        • Rebar E.J.
        • et al.
        Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.
        PLoS Pathog. 2011; 7: e1002020
        • Didigu C.A.
        • Wilen C.B.
        • Wang J.
        • Duong J.
        • Secreto A.J.
        • Danet-Desnoyers G.A.
        • et al.
        Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection.
        Blood. 2014; 123: 61-69
        • van Lunzen J.
        • Glaunsinger T.
        • Stahmer I.
        • von Baehr V.
        • Baum C.
        • Schilz A.
        • et al.
        Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus.
        Mol Ther. 2007; 15: 1024-1033
        • Kimpel J.
        • Braun S.E.
        • Qiu G.
        • Wong F.E.
        • Conolle M.
        • Schmitz J.E.
        • et al.
        Survival of the fittest: positive selection of CD4+ T cells expressing a membrane-bound fusion inhibitor following HIV-1 infection.
        PLoS ONE. 2010; 5: e12357
        • Younan P.M.
        • Polacino P.
        • Kowalski J.P.
        • Peterson C.W.
        • Maurice N.J.
        • Williams N.P.
        • et al.
        Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model.
        Blood. 2013; 122: 179-187
        • Neagu M.R.
        • Ziegler P.
        • Pertel T.
        • Strambio-De-Castillia C.
        • Grutter C.
        • Martinetti G.
        • et al.
        Potent inhibition of HIV-1 by TRIM5-cyclophilin fusion proteins engineered from human components.
        J Clin Invest. 2009; 119: 3035-3047
        • Vets S.
        • Kimpel J.
        • Volk A.
        • De Rijck J.
        • Schrijvers R.
        • Verbinnen B.
        • et al.
        Lens epithelium-derived growth factor/p75 qualifies as a target for HIV gene therapy in the NSG mouse model.
        Mol Ther. 2012; 20: 908-917
        • Green M.
        • Ishino M.
        • Loewenstein P.M.
        Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression.
        Cell. 1989; 58: 215-223
        • Chatterjee S.
        • Johnson P.R.
        • Wong Jr, K.K.
        Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector.
        Science. 1992; 258: 1485-1488
        • Bevec D.
        • Dobrovnik M.
        • Hauber J.
        • Bohnlein E.
        Inhibition of human immunodeficiency virus type 1 replication in human T cells by retroviral-mediated gene transfer of a dominant-negative Rev trans-activator.
        Proc Natl Acad Sci USA. 1992; 89: 9870-9874
        • Bahner I.
        • Kearns K.
        • Hao Q.L.
        • Smogorzewska E.M.
        • Kohn D.B.
        Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture.
        J Virol. 1996; 70: 4352-4360
        • Arhel N.
        • Kirchhoff F.
        Host proteins involved in HIV infection: new therapeutic targets.
        Biochim Biophys Acta. 2010; 1802: 313-321
        • Sarver N.
        • Cantin E.M.
        • Chang P.S.
        • Zaia J.A.
        • Ladne P.A.
        • Stephens D.A.
        • et al.
        Ribozymes as potential anti-HIV-1 therapeutic agents.
        Science. 1990; 247: 1222-1225
        • Tavassoli A.
        • Lu Q.
        • Gam J.
        • Pan H.
        • Benkovic S.J.
        • Cohen S.N.
        Inhibition of HIV budding by a genetically selected cyclic peptide targeting the Gag-TSG101 interaction.
        ACS Chem Biol. 2008; 3: 757-764
        • Lv M.
        • Wang J.
        • Zhu Y.
        • Wang X.
        • Zuo T.
        • Liu D.
        • et al.
        Overexpression of inactive tetherin delGPI mutant inhibits HIV-1 Vpu-mediated antagonism of endogenous tetherin.
        FEBS Lett. 2013; 587: 37-43
        • Mi Z.
        • Wang X.
        • He Y.
        • Li X.
        • Ding J.
        • Liu H.
        • et al.
        A novel peptide to disrupt the interaction of BST-2 and Vpu.
        Biopolymers. 2014; 102: 280-287
        • Burnett J.C.
        • Zaia J.A.
        • Rossi J.J.
        Creating genetic resistance to HIV.
        Curr Opin Immunol. 2012; 24: 625-632
        • Hoxie J.A.
        • June C.H.
        Novel cell and gene therapies for HIV.
        Cold Spring Harb Perspect Med. 2012; 2
        • Manjunath N.
        • Yi G.
        • Dang Y.
        • Shankar P.
        Newer gene editing technologies toward HIV gene therapy.
        Viruses. 2013; 5: 2748-2766
        • Li W.
        • Yu M.
        • Bai L.
        • Bu D.
        • Xu X.
        Downregulation of CCR5 expression on cells by recombinant adenovirus containing antisense CCR5, a possible measure to prevent HIV-1 from entering target cells.
        J Acquir Immune Defic Syndr. 2006; 43: 516-522
        • Tebas P.
        • Stein D.
        • Binder-Scholl G.
        • Mukherjee R.
        • Brady T.
        • Rebello T.
        • et al.
        Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV.
        Blood. 2013; 121: 1524-1533
        • Wandtke T.
        • Wozniak J.
        • Kopinski P.
        Aptamers in diagnostics and treatment of viral infections.
        Viruses. 2015; 7: 751-780
        • Sullenger B.A.
        • Gallardo H.F.
        • Ungers G.E.
        • Gilboa E.
        Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication.
        Cell. 1990; 63: 601-608
        • Lee S.W.
        • Gallardo H.F.
        • Gilboa E.
        • Smith C.
        Inhibition of human immunodeficiency virus type 1 in human T cells by a potent Rev response element decoy consisting of the 13-nucleotide minimal Rev-binding domain.
        J Virol. 1994; 68: 8254-8264
        • DiGiusto D.L.
        • Krishnan A.
        • Li L.
        • Li H.
        • Li S.
        • Rao A.
        • et al.
        RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma.
        Sci Transl Med. 2010; 2: 36ra43
        • Ahlenstiel C.L.
        • Suzuki K.
        • Marks K.
        • Symonds G.P.
        • Kelleher A.D.
        Controlling HIV-1: non-coding RNA gene therapy approaches to a functional cure.
        Front Immunol. 2015; 6: 474
        • Kumar P.
        • Ban H.S.
        • Kim S.S.
        • Wu H.
        • Pearson T.
        • Greiner D.L.
        • et al.
        T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice.
        Cell. 2008; 134: 577-586
        • Ramakrishnan V.
        The ribosome emerges from a black box.
        Cell. 2014; 159: 979-984
        • Andang M.
        • Hinkula J.
        • Hotchkiss G.
        • Larsson S.
        • Britton S.
        • Wong-Staal F.
        • et al.
        Dose-response resistance to HIV-1/MuLV pseudotype virus ex vivo in a hairpin ribozyme transgenic mouse model.
        Proc Natl Acad Sci USA. 1999; 96: 12749-12753
        • Yu M.
        • Ojwang J.
        • Yamada O.
        • Hampel A.
        • Rapapport J.
        • Looney D.
        • et al.
        A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1.
        Proc Natl Acad Sci USA. 1993; 90: 6340-6344
        • Bai J.
        • Gorantla S.
        • Banda N.
        • Cagnon L.
        • Rossi J.
        • Akkina R.
        Characterization of anti-CCR5 ribozyme-transduced CD34+ hematopoietic progenitor cells in vitro and in a SCID-hu mouse model in vivo.
        Mol Ther. 2000; 1: 244-254
        • Kang E.M.
        • de Witte M.
        • Malech H.
        • Morgan R.A.
        • Phang S.
        • Carter C.
        • et al.
        Nonmyeloablative conditioning followed by transplantation of genetically modified HLA-matched peripheral blood progenitor cells for hematologic malignancies in patients with acquired immunodeficiency syndrome.
        Blood. 2002; 99: 698-701
        • Steinberger P.
        • Andris-Widhopf J.
        • Buhler B.
        • Torbett B.E.
        • Barbas 3rd., C.F.
        Functional deletion of the CCR5 receptor by intracellular immunization produces cells that are refractory to CCR5-dependent HIV-1 infection and cell fusion.
        Proc Natl Acad Sci USA. 2000; 97: 805-810
        • Chen J.D.
        • Bai X.
        • Yang A.G.
        • Cong Y.
        • Chen S.Y.
        Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy.
        Nat Med. 1997; 3: 1110-1116
        • Yang A.G.
        • Bai X.
        • Huang X.F.
        • Yao C.
        • Chen S.
        Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection.
        Proc Natl Acad Sci USA. 1997; 94: 11567-11572
        • Egelhofer M.
        • Brandenburg G.
        • Martinius H.
        • Schult-Dietrich P.
        • Melikyan G.
        • Kunert R.
        • et al.
        Inhibition of human immunodeficiency virus type 1 entry in cells expressing gp41-derived peptides.
        J Virol. 2004; 78: 568-575
        • Leslie G.J.
        • Wang J.
        • Richardson M.
        • Haggarty B.
        • Hua K.L.
        • Duong J.
        • et al.
        Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus.
        (Submitted)2016
        • Bhindi R.
        • Fahmy R.G.
        • Lowe H.C.
        • Chesterman C.N.
        • Dass C.R.
        • Cairns M.J.
        • et al.
        Brothers in arms: DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies.
        Am J Pathol. 2007; 171: 1079-1088
        • Pandey V.N.
        • Upadhyay A.
        • Chaubey B.
        Prospects for antisense peptide nucleic acid (PNA) therapies for HIV.
        Expert Opin Biol Ther. 2009; 9: 975-989
        • Gaj T.
        • Gersbach C.A.
        • Barbas 3rd., C.F.
        ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering.
        Trends Biotechnol. 2013; 31: 397-405
        • Wyman C.
        • Kanaar R.
        DNA double-strand break repair: all's well that ends well.
        Annu Rev Genet. 2006; 40: 363-383
        • San Filippo J.
        • Sung P.
        • Klein H.
        Mechanism of eukaryotic homologous recombination.
        Annu Rev Biochem. 2008; 77: 229-257
        • Wang J.
        • Exline C.M.
        • DeClercq J.J.
        • Llewellyn G.N.
        • Hayward S.B.
        • Li P.W.
        • et al.
        Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors.
        Nat Biotechnol. 2015; 33: 1256-1263
        • Urnov F.D.
        • Rebar E.J.
        • Holmes M.C.
        • Zhang H.S.
        • Gregory P.D.
        Genome editing with engineered zinc finger nucleases.
        Nat Rev Genet. 2010; 11: 636-646
        • Wright D.A.
        • Li T.
        • Yang B.
        • Spalding M.H.
        TALEN-mediated genome editing: prospects and perspectives.
        Biochem J. 2014; 462: 15-24
        • Wright A.V.
        • Nunez J.K.
        • Doudna J.A.
        Biology and applications of CRISPR systems: harnessing nature's toolbox for genome engineering.
        Cell. 2016; 164: 29-44
        • Li L.
        • Krymskaya L.
        • Wang J.
        • Henley J.
        • Rao A.
        • Cao L.F.
        • et al.
        Genomic editing of the HIV-1 coreceptor CCR5 in adult hematopoietic stem and progenitor cells using zinc finger nucleases.
        Mol Ther. 2013; 21: 1259-1269
        • Cradick T.J.
        • Fine E.J.
        • Antico C.J.
        • Bao G.
        CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity.
        Nucleic Acids Res. 2013; 41: 9584-9592
        • Kang H.
        • Minder P.
        • Park M.A.
        • Mesquitta W.T.
        • Torbett B.E.
        • Slukvin I.I.
        CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus.
        Mol Ther Nucleic Acids. 2015; 4: e268
        • Mock U.
        • Machowicz R.
        • Hauber I.
        • Horn S.
        • Abramowski P.
        • Berdien B.
        • et al.
        mRNA transfection of a novel TAL effector nuclease (TALEN) facilitates efficient knockout of HIV co-receptor CCR5.
        Nucleic Acids Res. 2015; 43: 5560-5571
        • Zhou Y.
        • Kurihara T.
        • Ryseck R.P.
        • Yang Y.
        • Ryan C.
        • Loy J.
        • et al.
        Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor.
        J Immunol. 1998; 160: 4018-4025
        • Yurchenko E.
        • Tritt M.
        • Hay V.
        • Shevach E.M.
        • Belkaid Y.
        • Piccirillo C.A.
        CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence.
        J Exp Med. 2006; 203: 2451-2460
        • Telenti A.
        Safety concerns about CCR5 as an antiviral target.
        Curr Opin HIV AIDS. 2009; 4: 131-135
        • Kroetz D.N.
        • Deepe Jr, G.S.
        CCR5 dictates the equilibrium of proinflammatory IL-17+ and regulatory Foxp3+ T cells in fungal infection.
        J Immunol. 2010; 184: 5224-5231
        • Kroetz D.N.
        • Deepe Jr, G.S.
        An aberrant thymus in CCR5-/- mice is coupled with an enhanced adaptive immune response in fungal infection.
        J Immunol. 2011; 186: 5949-5955
        • Huffnagle G.B.
        • McNeil L.K.
        • McDonald R.A.
        • Murphy J.W.
        • Toews G.B.
        • Maeda N.
        • et al.
        Cutting edge: role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans.
        J Immunol. 1999; 163: 4642-4646
        • Chavez J.H.
        • Franca R.F.
        • Oliveira C.J.
        • de Aquino M.T.
        • Farias K.J.
        • Machado P.R.
        • et al.
        Influence of the CCR-5/MIP-1 alpha axis in the pathogenesis of Rocio virus encephalitis in a mouse model.
        Am J Trop Med Hyg. 2013; 89: 1013-1018
        • Galvani A.P.
        • Slatkin M.
        Evaluating plague and smallpox as historical selective pressures for the CCR5-Delta 32 HIV-resistance allele.
        Proc Natl Acad Sci USA. 2003; 100: 15276-15279
        • Alonzo 3rd, F.
        • Kozhaya L.
        • Rawlings S.A.
        • Reyes-Robles T.
        • DuMont A.L.
        • Myszka D.G.
        • et al.
        CCR5 is a receptor for Staphylococcus aureus leukotoxin ED.
        Nature. 2013; 493: 51-55
        • Elvin S.J.
        • Williamson E.D.
        • Scott J.C.
        • Smith J.N.
        • Perez De Lema G.
        • Chilla S.
        • et al.
        Evolutionary genetics: ambiguous role of CCR5 in Y. pestis infection.
        Nature. 2004; 430: 417
        • Mecsas J.
        • Franklin G.
        • Kuziel W.A.
        • Brubaker R.R.
        • Falkow S.
        • Mosier D.E.
        Evolutionary genetics: CCR5 mutation and plague protection.
        Nature. 2004; 427: 606
        • Glass W.G.
        • McDermott D.H.
        • Lim J.K.
        • Lekhong S.
        • Yu S.F.
        • Frank W.A.
        • et al.
        CCR5 deficiency increases risk of symptomatic West Nile virus infection.
        J Exp Med. 2006; 203: 35-40
        • Kindberg E.
        • Mickiene A.
        • Ax C.
        • Akerlind B.
        • Vene S.
        • Lindquist L.
        • et al.
        A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis.
        J Infect Dis. 2008; 197: 266-269
        • Yuan J.
        • Wang J.
        • Crain K.
        • Fearns C.
        • Kim K.A.
        • Hua K.L.
        • et al.
        Zinc-finger nuclease editing of human cxcr4 promotes HIV-1 CD4(+) T cell resistance and enrichment.
        Mol Ther. 2012; 20: 849-859
        • Zou Y.R.
        • Kottmann A.H.
        • Kuroda M.
        • Taniuchi I.
        • Littman D.R.
        Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development.
        Nature. 1998; 393: 595-599
        • Fruehauf S.
        Current clinical indications for plerixafor.
        Transfus Med Hemother. 2013; 40: 246-250
        • Eaves C.J.
        Hematopoietic stem cells: concepts, definitions, and the new reality.
        Blood. 2015; 125: 2605-2613
        • Porada C.D.
        • Atala A.J.
        • Almeida-Porada G.
        The hematopoietic system in the context of regenerative medicine.
        Methods. 2015; 99: 44-61
        • Lopez M.
        • Beaujean F.
        Positive selection of autologous peripheral blood stem cells.
        Baillieres Best Pract Res Clin Haematol. 1999; 12: 71-86
        • Korbling M.
        • Anderlini P.
        Peripheral blood stem cell versus bone marrow allotransplantation: does the source of hematopoietic stem cells matter?.
        Blood. 2001; 98: 2900-2908
        • Stan R.
        • Zaia J.A.
        Practical considerations in gene therapy for HIV cure.
        Curr HIV/AIDS Rep. 2014; 11: 11-19
        • Showel M.
        • Fuchs E.J.
        Recent developments in HLA-haploidentical transplantations.
        Best Pract Res Clin Haematol. 2015; 28: 141-146
        • Tebas P.
        • Stein D.
        • Tang W.W.
        • Frank I.
        • Wang S.Q.
        • Lee G.
        • et al.
        Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV.
        N Engl J Med. 2014; 370: 901-910
        • Kohn D.B.
        • Bauer G.
        • Rice C.R.
        • Rothschild J.C.
        • Carbonaro D.A.
        • Valdez P.
        • et al.
        A clinical trial of retroviral-mediated transfer of a rev-responsive element decoy gene into CD34(+) cells from the bone marrow of human immunodeficiency virus-1-infected children.
        Blood. 1999; 94: 368-371
        • Amado R.G.
        • Mitsuyasu R.T.
        • Rosenblatt J.D.
        • Ngok F.K.
        • Bakker A.
        • Cole S.
        • et al.
        Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients.
        Hum Gene Ther. 2004; 15: 251-262
        • Amado R.G.
        • Mitsuyasu R.T.
        • Symonds G.
        • Rosenblatt J.D.
        • Zack J.
        • Sun L.Q.
        • et al.
        A phase I trial of autologous CD34+ hematopoietic progenitor cells transduced with an anti-HIV ribozyme.
        Hum Gene Ther. 1999; 10: 2255-2270
        • Michienzi A.
        • Castanotto D.
        • Lee N.
        • Li S.
        • Zaia J.A.
        • Rossi J.J.
        RNA-mediated inhibition of HIV in a gene therapy setting.
        Ann N Y Acad Sci. 2003; 1002: 63-71
        • Mitsuyasu R.T.
        • Merigan T.C.
        • Carr A.
        • Zack J.A.
        • Winters M.A.
        • Workman C.
        • et al.
        Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells.
        Nat Med. 2009; 15: 285-292
        • Hayakawa J.
        • Washington K.
        • Uchida N.
        • Phang O.
        • Kang E.M.
        • Hsieh M.M.
        • et al.
        Long-term vector integration site analysis following retroviral mediated gene transfer to hematopoietic stem cells for the treatment of HIV infection.
        PLoS ONE. 2009; 4: e4211
        • Podsakoff G.M.
        • Engel B.C.
        • Carbonaro D.A.
        • Choi C.
        • Smogorzewska E.M.
        • Bauer G.
        • et al.
        Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells.
        Mol Ther. 2005; 12: 77-86
        • Younan P.M.
        • Peterson C.W.
        • Polacino P.
        • Kowalski J.P.
        • Obenza W.
        • Miller H.W.
        • et al.
        Lentivirus-mediated Gene Transfer in Hematopoietic Stem Cells Is Impaired in SHIV-infected, ART-treated Nonhuman Primates.
        Mol Ther. 2015; 23: 943-951
        • Beard B.C.
        • Trobridge G.D.
        • Ironside C.
        • McCune J.S.
        • Adair J.E.
        • Kiem H.P.
        Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates.
        J Clin Invest. 2010; 120: 2345-2354