Advertisement

Gene-modified, cell-based therapies—an overview

  • Allison B. Powell
    Affiliations
    Program for Cell Enhancement and Technologies for Immunotherapy (CETI) and Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
    Search for articles by this author
  • Kiara Williams
    Affiliations
    Program for Cell Enhancement and Technologies for Immunotherapy (CETI) and Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
    Search for articles by this author
  • Conrad Russell Y. Cruz
    Correspondence
    Correspondence: Conrad Russell Y. Cruz, MD, PhD, Program for Cell Enhancement and Technologies for Immunotherapy (CETI) and Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA.
    Affiliations
    Program for Cell Enhancement and Technologies for Immunotherapy (CETI) and Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA
    Search for articles by this author
      Progress in the therapeutic efficacy of gene-modified cell therapies across a spectrum of both preclinical models and clinical trials has renewed optimism in these much-anticipated next generation of “drugs.” Advances in genetic engineering now make development of these therapeutic cells more accessible to scientists—allowing for their wider adoption, more fine-tuned development, and ultimately, more diverse application. This special Cytotherapy Issue highlights the rapidly expanding field of gene-modified cells for therapy of a variety of malignant and non-malignant disorders.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fischbach M.A.
        • Bluestone J.A.
        • Lim W.A.
        Cell-based therapeutics: the next pillar of medicine.
        Sci Transl Med. 2013; 5 (PubMed Central PMCID: PMC3772767): 179ps7https://doi.org/10.1126/scitranslmed.3005568
        • Mason C.
        • Brindley D.A.
        • Culme-Seymour E.J.
        • Davie N.L.
        Cell therapy industry: billion dollar global business with unlimited potential.
        Regen Med. 2011; 6: 265-272https://doi.org/10.2217/rme.11.28
        • Coopman K.
        • Medcalf N.
        From production to patient: challenges and approaches for delivering cell therapies.
        StemBook, Cambridge (MA)2008
        • Baranyi L.
        • Slepushkin V.
        • Doropulic B.
        Lattime E.C. Gerson S.L. Ex vivo gene therapy (book chapter). 3rd ed. 2014 (xv, 537 pages p)
        • Aggarwal R.
        • Pompili V.J.
        • Das H.
        Genetic modification of ex-vivo expanded stem cells for clinical application.
        Front Biosci. 2010; 15: 854-871
        • Rooney C.M.
        • Leen A.M.
        • Vera J.F.
        • Heslop H.E.
        T lymphocytes targeting native receptors.
        Immunol Rev. 2014; 257 (PubMed Central PMCID: PMC3869095): 39-55https://doi.org/10.1111/imr.12133
        • Leen A.M.
        • Bollard C.M.
        • Mendizabal A.
        • Shpall E.J.
        • Szabolcs P.
        • Antin J.H.
        • et al.
        Most closely HLA-matched allogeneic virus specific cytotoxic T-lymphocytes (CTL) to treat persistent reactivation or infection with adenovirus, CMV and EBV after hemopoietic stem cell transplantation (HSCT).
        Biol Blood Marrow Transplant. 2011; 17: S151-2https://doi.org/10.1016/j.bbmt.2010.12.008
        • Hamada H.
        • Kobune M.
        • Nakamura K.
        • Kawano Y.
        • Kato K.
        • Honmou O.
        • et al.
        Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy.
        Cancer Sci. 2005; 96: 149-156https://doi.org/10.1111/j.1349-7006.2005.00032.x
        • Wang D.
        • Gao G.
        State-of-the-art human gene therapy: part I. Gene delivery technologies.
        Discov Med. 2014; 18 (PubMed Central PMCID: PMC4440413): 67-77
        • Pernet O.
        • Yadav S.S.
        • An D.S.
        Stem cell-based therapies for HIV/AIDS.
        Adv Drug Deliv Rev. 2016; 103 (PubMed Central PMCID: PMC4935568): 187-201https://doi.org/10.1016/j.addr.2016.04.027
        • Rezvani K.
        • Rouce R.H.
        The application of natural killer cell immunotherapy for the treatment of cancer.
        Front Immunol. 2015; 6 (PubMed Central PMCID: PMC4648067): 578https://doi.org/10.3389/fimmu.2015.00578
        • Bonini C.
        • Mondino A.
        Adoptive T-cell therapy for cancer: the era of engineered T cells.
        Eur J Immunol. 2015; 45: 2457-2469https://doi.org/10.1002/eji.201545552
        • Boudreau J.E.
        • Bonehill A.
        • Thielemans K.
        • Wan Y.
        Engineering dendritic cells to enhance cancer immunotherapy.
        Mol Ther. 2011; 19 (PubMed Central PMCID: PMC3098642): 841-853https://doi.org/10.1038/mt.2011.57
        • Meyerrose T.
        • Olson S.
        • Pontow S.
        • Kalomoiris S.
        • Jung Y.
        • Annett G.
        • et al.
        Mesenchymal stem cells for the sustained in vivo delivery of bioactive factors.
        Adv Drug Deliv Rev. 2010; 62 (PubMed Central PMCID: PMC3815452): 1167-1174https://doi.org/10.1016/j.addr.2010.09.013
        • Hockemeyer D.
        • Jaenisch R.
        Induced pluripotent stem cells meet genome editing.
        Cell Stem Cell. 2016; 18 (PubMed Central PMCID: PMC4871596): 573-586https://doi.org/10.1016/j.stem.2016.04.013
        • Singh V.K.
        • Kalsan M.
        • Kumar N.
        • Saini A.
        • Chandra R.
        Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery.
        Front Cell Dev Biol. 2015; 3 (PubMed Central PMCID: PMC4313779): 2https://doi.org/10.3389/fcell.2015.00002
        • Kazuki Y.
        • Hiratsuka M.
        • Takiguchi M.
        • Osaki M.
        • Kajitani N.
        • Hoshiya H.
        • et al.
        Complete genetic correction of ips cells from Duchenne muscular dystrophy.
        Mol Ther. 2010; 18 (PubMed Central PMCID: PMC2839293): 386-393https://doi.org/10.1038/mt.2009.274
        • Lohmeyer J.A.
        • Liu F.
        • Kruger S.
        • Lindenmaier W.
        • Siemers F.
        • Machens H.G.
        Use of gene-modified keratinocytes and fibroblasts to enhance regeneration in a full skin defect.
        Langenbecks Arch Surg. 2011; 396: 543-550https://doi.org/10.1007/s00423-011-0761-3
        • Ritter T.
        • Wilk M.
        • Nosov M.
        Gene therapy approaches to prevent corneal graft rejection: where do we stand?.
        Ophthalmic Res. 2013; 50: 135-140https://doi.org/10.1159/000350547
        • Guha C.
        • Roy-Chowdhury N.
        • Jauregui H.
        • Roy-Chowdhury J.
        Hepatocyte-based gene therapy.
        J Hepatobiliary Pancreat Surg. 2001; 8: 51-57
        • Kimelman N.
        • Pelled G.
        • Helm G.A.
        • Huard J.
        • Schwarz E.M.
        • Gazit D.
        Review: gene- and stem cell-based therapeutics for bone regeneration and repair.
        Tissue Eng. 2007; 13: 1135-1150https://doi.org/10.1089/ten.2007.0096
        • Haider H.K.
        • Elmadbouh I.
        • Jean-Baptiste M.
        • Ashraf M.
        Nonviral vector gene modification of stem cells for myocardial repair.
        Mol Med. 2008; 14 (PubMed Central PMCID: PMC2055423): 79-86https://doi.org/10.2119/2007-00092.Haider
        • Lee J.Y.
        • Peng H.
        • Usas A.
        • Musgrave D.
        • Cummins J.
        • Pelinkovic D.
        • et al.
        Enhancement of bone healing based on ex vivo gene therapy using human muscle-derived cells expressing bone morphogenetic protein 2.
        Hum Gene Ther. 2002; 13: 1201-1211https://doi.org/10.1089/104303402320138989
        • O'Malley Jr, B.W.
        • Adams R.M.
        • Sikes M.L.
        • Sawada T.
        • Ledley F.D.
        Retrovirus-mediated gene transfer into canine thyroid using an ex vivo strategy.
        Hum Gene Ther. 1993; 4: 171-178https://doi.org/10.1089/hum.1993.4.2-171
        • Aiuti A.
        • Cattaneo F.
        • Galimberti S.
        • Benninghoff U.
        • Cassani B.
        • Callegaro L.
        • et al.
        Gene therapy for immunodeficiency due to adenosine deaminase deficiency.
        N Engl J Med. 2009; 360 (PubMed PMID: WOS:000262812400004): 447-458https://doi.org/10.1056/NEJMoa0805817
        • Biffi A.
        • Montini E.
        • Lorioli L.
        • Cesani M.
        • Fumagalli F.
        • Plati T.
        • et al.
        Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy.
        Science. 2013; 341 (PubMed PMID: WOS:000323370600034. 864-U58)https://doi.org/10.1126/science.1233158
        • Iwahori K.
        • Kakarla S.
        • Velasquez M.P.
        • Yu F.
        • Yi Z.
        • Gerken C.
        • et al.
        Engager T cells: a new class of antigen-specific T cells that redirect bystander T cells.
        Mol Ther. 2015; 23 (PubMed Central PMCID: PMC4426792): 171-178https://doi.org/10.1038/mt.2014.156
        • Koneru M.
        • Purdon T.J.
        • Spriggs D.
        • Koneru S.
        • Brentjens R.J.
        IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo.
        Oncoimmunology. 2015; 4 (PubMed Central PMCID: PMC4404840): e994446https://doi.org/10.4161/2162402X.2014.994446
        • Barese C.N.
        • Dunbar C.E.
        Contributions of gene marking to cell and gene therapies.
        Hum Gene Ther. 2011; 22 (PubMed Central PMCID: PMC3120086): 659-668https://doi.org/10.1089/hum.2010.237
        • Heslop H.
        • Rooney C.
        • Brenner M.
        • Krance R.
        • Carrum G.
        • Gahn B.
        • et al.
        Administration of neomycin resistance gene-marked EBV-specific cytotoxic T-lymphocytes as therapy for patients receiving a bone marrow transplant for relapsed EBV-positive Hodgkin disease.
        Hum Gene Ther. 2000; 11: 1465-1475https://doi.org/10.1089/10430340050057530
        • Schmidt M.
        • Schwarzwaelder K.
        • Bartholomae C.
        • Zaoui K.
        • Ball C.
        • Pilz I.
        • et al.
        High-resolution insertion-site analysis by linear amplification-mediated PCR (LAM-PCR).
        Nat Methods. 2007; 4: 1051-1057https://doi.org/10.1038/nmeth1103
        • Foster A.E.
        • Dotti G.
        • Lu A.
        • Khalil M.
        • Brenner M.K.
        • Heslop H.E.
        • et al.
        Antitumor activity of EBV-specific T lymphocytes transduced with a dominant negative TGF-beta receptor.
        J Immunother. 2008; 31 (PubMed Central PMCID: PMC2745436): 500-505https://doi.org/10.1097/CJI.0b013e318177092b
        • Terakura S.
        • Yamamoto T.N.
        • Gardner R.A.
        • Turtle C.J.
        • Jensen M.C.
        • Riddell S.R.
        Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells.
        Blood. 2012; 119 (PubMed Central PMCID: PMC3251238): 72-82https://doi.org/10.1182/blood-2011-07-366419
        • Romanski A.
        • Uherek C.
        • Bug G.
        • Seifried E.
        • Klingemann H.
        • Wels W.S.
        • et al.
        CD19-CAR engineered NK-92 cells are sufficient to overcome NK cell resistance in B-cell malignancies.
        J Cell Mol Med. 2016; 20 (PubMed Central PMCID: PMC4929308): 1287-1294https://doi.org/10.1111/jcmm.12810
        • Park J.S.
        • Rhau B.
        • Hermann A.
        • McNally K.A.
        • Zhou C.
        • Gong D.
        • et al.
        Synthetic control of mammalian-cell motility by engineering chemotaxis to an orthogonal bioinert chemical signal.
        Proc Natl Acad Sci USA. 2014; 111 (PubMed Central PMCID: PMC4000811): 5896-5901https://doi.org/10.1073/pnas.1402087111
        • Gordley R.M.
        • Bugaj L.J.
        • Lim W.A.
        Modular engineering of cellular signaling proteins and networks.
        Curr Opin Struct Biol. 2016; 39: 106-114https://doi.org/10.1016/j.sbi.2016.06.012
        • Di Stasi A.
        • Tey S.K.
        • Dotti G.
        • Fujita Y.
        • Kennedy-Nasser A.
        • Martinez C.
        • et al.
        Inducible apoptosis as a safety switch for adoptive cell therapy.
        N Engl J Med. 2011; 365 (PubMed Central PMCID: PMC3236370): 1673-1683https://doi.org/10.1056/NEJMoa1106152
        • Roybal K.T.
        • Rupp L.J.
        • Morsut L.
        • Walker W.J.
        • McNally K.A.
        • Park J.S.
        • et al.
        Precision tumor recognition by T cells with combinatorial antigen-sensing circuits.
        Cell. 2016; 164 (PubMed Central PMCID: PMC4752902): 770-779https://doi.org/10.1016/j.cell.2016.01.011
        • Hutter G.
        • Bodor J.
        • Ledger S.
        • Boyd M.
        • Millington M.
        • Tsie M.
        • et al.
        CCR5 targeted cell therapy for HIV and prevention of viral escape.
        Viruses. 2015; 7 (PubMed Central PMCID: PMC4576177): 4186-4203https://doi.org/10.3390/v7082816
        • Naldini L.
        Gene therapy returns to centre stage.
        Nature. 2015; 526: 351-360https://doi.org/10.1038/nature15818
        • Fischer A.
        • Hacein-Bey-Abina S.
        • Cavazzana-Calvo M.
        20 years of gene therapy for SCID.
        Nat Immunol. 2010; 11 (PubMed PMID: WOS:000277821300002): 457-460https://doi.org/10.1038/ni0610-457
        • Heslop H.E.
        • Slobod K.S.
        • Pule M.A.
        • Hale G.A.
        • Rousseau A.
        • Smith C.A.
        • et al.
        Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients.
        Blood. 2010; 115 (PubMed Central PMCID: PMC2817637): 925-935https://doi.org/10.1182/blood-2009-08-239186
        • Bordignon C.
        • Notarangelo L.D.
        • Nobili N.
        • Ferrari G.
        • Casorati G.
        • Panina P.
        • et al.
        Gene-therapy in peripheral-blood lymphocytes and bone-marrow for ADA(-) immunodeficient patients.
        Science. 1995; 270 (PubMed PMID: WOS:A1995TA37400042): 470-475https://doi.org/10.1126/science.270.5235.470
        • Vannucci L.
        • Lai M.
        • Chiuppesi F.
        • Ceccherini-Nelli L.
        • Pistello M.
        Viral vectors: a look back and ahead on gene transfer technology.
        New Microbiol. 2013; 36: 1-22
        • Hacein-Bey-Abina S.
        • Von Kalle C.
        • Schmidt M.
        • McCcormack M.P.
        • Wulffraat N.
        • Leboulch P.
        • et al.
        LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1.
        Science. 2003; 302 (PubMed PMID: WOS:000185963200033): 415-419https://doi.org/10.1126/science.1088547
        • Coci E.G.
        • Maetzig T.
        • Zychlinski D.
        • Rothe M.
        • Suerth J.D.
        • Klein C.
        • et al.
        Novel self-inactivating vectors for reconstitution of Wiskott-Aldrich syndrome.
        Curr Gene Ther. 2015; 15: 245-254
        • Dargel C.
        • Bassani-Sternberg M.
        • Hasreiter J.
        • Zani F.
        • Bockmann J.H.
        • Thiele F.
        • et al.
        T cells engineered to express a T-Cell receptor specific for glypican-3 to recognize and kill hepatoma cells in vitro and in mice.
        Gastroenterology. 2015; 149: 1042-1052https://doi.org/10.1053/j.gastro.2015.05.055
        • Niess H.
        • von Einem J.C.
        • Thomas M.N.
        • Michl M.
        • Angele M.K.
        • Huss R.
        • et al.
        Treatment of advanced gastrointestinal tumors with genetically modified autologous mesenchymal stromal cells (TREAT-ME1): study protocol of a phase I/II clinical trial.
        BMC Cancer. 2015; 15 (PubMed Central PMCID: PMC4393860): 237https://doi.org/10.1186/s12885-015-1241-x
        • Hacein-Bey-Abina S.
        • Pai S.Y.
        • Gaspar H.B.
        • Armant M.
        • Berry C.C.
        • Blanche S.
        • et al.
        A modified gamma-retrovirus vector for X-linked severe combined immunodeficiency.
        N Engl J Med. 2014; 371 (PubMed Central PMCID: PMC4274995): 1407-1417https://doi.org/10.1056/NEJMoa1404588
        • Merten O.W.
        • Hebben M.
        • Bovolenta C.
        Production of lentiviral vectors.
        Mol Ther Methods Clin Dev. 2016; 3 (PubMed Central PMCID: PMC4830361): 16017https://doi.org/10.1038/mtm.2016.17
        • Porter D.L.
        • Levine B.L.
        • Kalos M.
        • Bagg A.
        • June C.H.
        Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia.
        N Engl J Med. 2011; 365 (PubMed PMID: WOS:000294205300008): 725-733https://doi.org/10.1056/NEJMoa1103849
        • Iwabuchi M.
        • Narita M.
        • Uchiyama T.
        • Iwaya S.
        • Oiwa E.
        • Nishizawa Y.
        • et al.
        Enhancement of the antigen-specific cytotoxic T lymphocyte-inducing ability in the PMDC11 leukemic plasmacytoid dendritic cell line via lentiviral vector-mediated transduction of the caTLR4 gene.
        Mol Med Rep. 2015; 12 (PubMed Central PMCID: PMC4464268): 2443-2450https://doi.org/10.3892/mmr.2015.3685
        • Urbinati F.
        • Hargrove P.W.
        • Geiger S.
        • Romero Z.
        • Wherley J.
        • Kaufman M.L.
        • et al.
        Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells.
        Exp Hematol. 2015; 43 (PubMed Central PMCID: PMC4428920): 346-351https://doi.org/10.1016/j.exphem.2015.01.009
        • Conese M.
        • Auriche C.
        • Ascenzioni F.
        Gene therapy progress and prospects: episomally maintained self-replicating systems.
        Gene Ther. 2004; 11: 1735-1741https://doi.org/10.1038/sj.gt.3302362
        • Aronovich E.L.
        • McIvor R.S.
        • Hackett P.B.
        The Sleeping Beauty transposon system: a non-viral vector for gene therapy.
        Hum Mol Genet. 2011; 20 (PubMed Central PMCID: PMC3095056): R14-20https://doi.org/10.1093/hmg/ddr140
        • Kebriaei P.
        • Singh H.
        • Huls M.H.
        • Figliola M.J.
        • Bassett R.
        • Olivares S.
        • et al.
        Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells.
        J Clin Invest. 2016; https://doi.org/10.1172/JCI86721
        • Griffin T.A.
        • Anderson H.C.
        • Wolfe J.H.
        Ex vivo gene therapy using patient iPSC-derived NSCs reverses pathology in the brain of a homologous mouse model.
        Stem Cell Reports. 2015; 4 (PubMed Central PMCID: PMC4437470): 835-846https://doi.org/10.1016/j.stemcr.2015.02.022
        • Ley D.
        • Van Zwieten R.
        • Puttini S.
        • Iyer P.
        • Cochard A.
        • Mermod N.
        A PiggyBac-mediated approach for muscle gene transfer or cell therapy.
        Stem Cell Res. 2014; 13: 390-403https://doi.org/10.1016/j.scr.2014.08.007
        • Jin C.
        • Fotaki G.
        • Ramachandran M.
        • Nilsson B.
        • Essand M.
        • Yu D.
        Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer.
        EMBO Mol Med. 2016; 8 (PubMed Central PMCID: PMC4931286): 702-711https://doi.org/10.15252/emmm.201505869
        • Ronald J.A.
        • Cusso L.
        • Chuang H.Y.
        • Yan X.
        • Dragulescu-Andrasi A.
        • Gambhir S.S.
        Development and validation of non-integrative, self-limited, and replicating minicircles for safe reporter gene imaging of cell-based therapies.
        PLoS ONE. 2013; 8 (PubMed Central PMCID: PMC3756008): e73138https://doi.org/10.1371/journal.pone.0073138
        • Bersenev A.
        • Levine B.L.
        Convergence of gene and cell therapy.
        Regen Med. 2012; 7: 50-56https://doi.org/10.2217/rme.12.71
        • Naldini L.
        Ex vivo gene transfer and correction for cell-based therapies.
        Nat Rev Genet. 2011; 12 (PubMed PMID: WOS:000289637600009): 301-315https://doi.org/10.1038/nrg2985
        • Mukherjee S.
        • Thrasher A.J.
        Gene therapy for PIDs: progress, pitfalls and prospects.
        Gene. 2013; 525 (PubMed PMID: WOS:000322416200008): 174-181https://doi.org/10.1016/j.gene.2013.03.098
        • Pasquet S.
        • Sovalat H.
        • Henon P.
        • Bischoff N.
        • Arkam Y.
        • Ojeda-Uribe M.
        • et al.
        Long-term benefit of intracardiac delivery of autologous granulocyte-colony-stimulating factor-mobilized blood CD34+ cells containing cardiac progenitors on regional heart structure and function after myocardial infarct.
        Cytotherapy. 2009; 11: 1002-1015https://doi.org/10.3109/14653240903164963
        • Abraham A.
        • Jacobsohn D.
        • Bollard C.M.
        Cellular therapy for sickle cell disease.
        Cytotherapy. 2016; 18: 1360-1369
        • Gad A.Z.
        • El-Naggar S.
        • Ahmed N.
        Realism and pragmatism in developing an effective CAR T cell product for solid cancers.
        Cytotherapy. 2016; 18: 1382-1392
        • Geyer M.B.
        • Brentjens R.J.
        Current clinical applications of chimeric antigen receptor (CAR) modified T cells.
        Cytotherapy. 2016; 18: 1393-1409
        • Burga R.A.
        • Nguyen T.
        • Zulovich J.
        • Madonna S.
        • Ylisastigui L.
        • Fernandes R.
        • et al.
        Improving efficacy of cancer immunotherapy by genetic modification of natural killer cells.
        Cytotherapy. 2016; 18: 1410-1421
        • Shimasaki N.
        • Coustan-Smith E.
        • Kamiya T.
        • Campana D.
        Expanded and armed natural killer cells for cancer treatment.
        Cytotherapy. 2016; 18: 1422-1434
        • Kozlowska A.
        • Mackiewicz J.
        • Mackiewicz A.
        Therapeutic gene modified cell based cancer vaccines.
        Gene. 2013; 525: 200-207https://doi.org/10.1016/j.gene.2013.03.056
        • Abraham R.S.
        • Mitchell D.A.
        Gene-modified dendritic cell vaccines for cancer.
        Cytotherapy. 2016; 18: 1446-1455
        • Sage E.
        • Thakrar R.
        • Janes S.M.
        Genetically modified mesenchymal stromal cells in cancer therapy.
        Cytotherapy. 2016; 18: 1435-1445
        • Kumaresan P.R.
        • Manuri P.R.
        • Albert N.D.
        • Maiti S.
        • Singh H.
        • Mi T.
        • et al.
        Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection.
        Proc Natl Acad Sci USA. 2014; 111 (PubMed Central PMCID: PMC4115509): 10660-10665https://doi.org/10.1073/pnas.1312789111
        • Wang J.
        Engineering hematopoietic stem cells towards a functional cure of human immunodeficiency virus infection.
        Cytotherapy. 2016; 18: 1370-1381
        • Jethwa H.
        • Adami A.A.
        • Maher J.
        Use of gene-modified regulatory T-cells to control autoimmune and alloimmune pathology: is now the right time?.
        Clin Immunol. 2014; 150: 51-63https://doi.org/10.1016/j.clim.2013.11.004
        • Brusko T.M.
        • Koya R.C.
        • Zhu S.
        • Lee M.R.
        • Putnam A.L.
        • McClymont S.A.
        • et al.
        Human antigen-specific regulatory T cells generated by T cell receptor gene transfer.
        PLoS ONE. 2010; 5 (PubMed Central PMCID: PMC2908680): e11726https://doi.org/10.1371/journal.pone.0011726
        • Breitbach M.
        • Bostani T.
        • Roell W.
        • Xia Y.
        • Dewald O.
        • Nygren J.M.
        • et al.
        Potential risks of bone marrow cell transplantation into infarcted hearts.
        Blood. 2007; 110: 1362-1369https://doi.org/10.1182/blood-2006-12-063412
        • Linette G.P.
        • Stadtmauer E.A.
        • Maus M.V.
        • Rapoport A.P.
        • Levine B.L.
        • Emery L.
        • et al.
        Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma.
        Blood. 2013; 122 (PubMed Central PMCID: PMC3743463): 863-871https://doi.org/10.1182/blood-2013-03-490565
        • Basu J.
        • Assaf B.T.
        • Bertram T.A.
        • Rao M.
        Preclinical biosafety evaluation of cell-based therapies: emerging global paradigms.
        Toxicol Pathol. 2015; 43: 115-125https://doi.org/10.1177/0192623314559104
        • Xu X.J.
        • Tang Y.M.
        Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells.
        Cancer Lett. 2014; 343: 172-178https://doi.org/10.1016/j.canlet.2013.10.004
        • Greco R.
        • Oliveira G.
        • Stanghellini M.T.
        • Vago L.
        • Bondanza A.
        • Peccatori J.
        • et al.
        Improving the safety of cell therapy with the TK-suicide gene.
        Front Pharmacol. 2015; 6 (PubMed Central PMCID: PMC4419602): 95https://doi.org/10.3389/fphar.2015.00095
        • Brudno J.N.
        • Kochenderfer J.N.
        Toxicities of chimeric antigen receptor T cells: recognition and management.
        Blood. 2016; 127 (PubMed Central PMCID: PMC4929924): 3321-3330https://doi.org/10.1182/blood-2016-04-703751
        • Shih C.C.
        • Forman S.J.
        • Chu P.
        • Slovak M.
        Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice.
        Stem Cells Dev. 2007; 16: 893-902https://doi.org/10.1089/scd.2007.0070
        • Jensen M.C.
        • Popplewell L.
        • Cooper L.J.
        • DiGiusto D.
        • Kalos M.
        • Ostberg J.R.
        • et al.
        Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans.
        Biol Blood Marrow Transplant. 2010; 16 (PubMed Central PMCID: PMC3383803): 1245-1256https://doi.org/10.1016/j.bbmt.2010.03.014
        • Hombach A.
        • Hombach A.A.
        • Abken H.
        Adoptive immunotherapy with genetically engineered T cells: modification of the IgG1 Fc ‘spacer’ domain in the extracellular moiety of chimeric antigen receptors avoids ‘off-target’ activation and unintended initiation of an innate immune response.
        Gene Ther. 2010; 17: 1206-1213https://doi.org/10.1038/gt.2010.91
        • Johnson L.A.
        • Scholler J.
        • Ohkuri T.
        • Kosaka A.
        • Patel P.R.
        • McGettigan S.E.
        • et al.
        Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma.
        Sci Transl Med. 2015; 7 (PubMed Central PMCID: PMC4467166): 275ra22https://doi.org/10.1126/scitranslmed.aaa4963
        • Gunter K.C.
        • Caplan A.L.
        • Mason C.
        • Salzman R.
        • Janssen W.E.
        • Nichols K.
        • et al.
        Cell therapy medical tourism: time for action.
        Cytotherapy. 2010; 12: 965-968https://doi.org/10.3109/14653249.2010.532663
        • McAllister T.N.
        • Audley D.
        • L'Heureux N.
        Autologous cell therapies: challenges in US FDA regulation.
        Regen Med. 2012; 7: 94-97https://doi.org/10.2217/rme.12.83
        • Mount N.M.
        • Ward S.J.
        • Kefalas P.
        • Hyllner J.
        Cell-based therapy technology classifications and translational challenges.
        Philos Trans R Soc Lond B Biol Sci. 2015; 370 (PubMed Central PMCID: PMC4634004): 20150017https://doi.org/10.1098/rstb.2015.0017