Advertisement

Cellular therapy for sickle cell disease

  • Allistair Abraham
    Correspondence
    Correspondence: Allistair Abraham, MD, Children's National Health System and The George Washington University, 111 Michigan Avenue NW, Washington, DC 20010, USA.
    Affiliations
    Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA

    Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington, DC, USA
    Search for articles by this author
  • David A. Jacobsohn
    Affiliations
    Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA
    Search for articles by this author
  • Catherine M. Bollard
    Affiliations
    Division of Blood and Marrow Transplant, Children's National Health System and The George Washington University, Washington, DC, USA

    Program for Cell Enhancement and Technologies for Immunotherapy, Children's National Health System and The George Washington University, Washington, DC, USA
    Search for articles by this author

      Abstract

      Sickle cell disease (SCD) is a monogenic red cell disorder affecting more than 300 000 annual births worldwide and leading to significant organ toxicity and premature mortality. Although chronic therapies such as hydroxyurea have improved outcomes, more durable therapeutic and curative options are still being investigated. Newer understanding of the disease has implicated invariant natural killer T cells as a critical immune profile that potentiates SCD. Hence, targeting this cell population may offer a new approach to disease management. Hematopoietic stem cell transplant is a curative option for patients with SCD, but the under-representation of minorities on the unrelated donor registry means that this is not a feasible option for more than 75% of patients. Work in this area has therefore focused on increasing the donor pool and decreasing transplant-related toxicities to make this a treatment option for the majority of patients with SCD. This review focuses on the currently available cell and gene therapies for patients with SCD and acknowledges that newer gene-editing approaches to improve gene therapy efficiency and safety are the next wave of potentially curative approaches.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Almeida C.B.
        • Souza L.E.
        • Leonardo F.C.
        • Costa F.T.
        • Werneck C.C.
        • Covas D.T.
        • et al.
        Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea.
        Blood. 2015; 126 (Epub 2015/05/29): 711-720https://doi.org/10.1182/blood-2014-12-616250
        • Belcher J.D.
        • Chen C.
        • Nguyen J.
        • Milbauer L.
        • Abdulla F.
        • Alayash A.I.
        • et al.
        Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease.
        Blood. 2014; 123 (Epub 2013/11/28) (PubMed Central PMCID: PMCPMC3894494): 377-390https://doi.org/10.1182/blood-2013-04-495887
        • Elmariah H.
        • Garrett M.E.
        • De Castro L.M.
        • Jonassaint J.C.
        • Ataga K.I.
        • Eckman J.R.
        • et al.
        Factors associated with survival in a contemporary adult sickle cell disease cohort.
        Am J Hematol. 2014; 89 (Epub 2014/01/31) (PubMed Central PMCID: PMCPMC3988218): 530-535https://doi.org/10.1002/ajh.23683
        • Platt O.S.
        • Brambilla D.J.
        • Rosse W.F.
        • Milner P.F.
        • Castro O.
        • Steinberg M.H.
        • et al.
        Mortality in sickle cell disease. Life expectancy and risk factors for early death.
        N Engl J Med. 1994; 330 (Epub 1994/06/09): 1639-1644https://doi.org/10.1056/nejm199406093302303
        • Grosse S.D.
        • Odame I.
        • Atrash H.K.
        • Amendah D.D.
        • Piel F.B.
        • Williams T.N.
        Sickle cell disease in Africa: a neglected cause of early childhood mortality.
        Am J Prev Med. 2011; 41 (Epub 2011/12/07) (PubMed Central PMCID: PMCPMC3708126): S398-405https://doi.org/10.1016/j.amepre.2011.09.013
        • Piel F.B.
        • Patil A.P.
        • Howes R.E.
        • Nyangiri O.A.
        • Gething P.W.
        • Dewi M.
        • et al.
        Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates.
        Lancet. 2013; 381 (Epub 2012/10/30) (PubMed Central PMCID: PMCPMC3547249): 142-151https://doi.org/10.1016/s0140-6736(12)61229-x
        • Quinn C.T.
        • Rogers Z.R.
        • McCavit T.L.
        • Buchanan G.R.
        Improved survival of children and adolescents with sickle cell disease.
        Blood. 2010; 115 (Epub 2010/03/03) (PubMed Central PMCID: PMCPMC2867259): 3447-3452https://doi.org/10.1182/blood-2009-07-233700
        • Hamideh D.
        • Alvarez O.
        Sickle cell disease related mortality in the United States (1999–2009).
        Pediatr Blood Cancer. 2013; 60 (Epub 2013/05/03): 1482-1486https://doi.org/10.1002/pbc.24557
        • Wallace K.L.
        • Marshall M.A.
        • Ramos S.I.
        • Lannigan J.A.
        • Field J.J.
        • Strieter R.M.
        • et al.
        NKT cells mediate pulmonary inflammation and dysfunction in murine sickle cell disease through production of IFN-gamma and CXCR3 chemokines.
        Blood. 2009; 114 (Epub 2009/05/13) (PubMed Central PMCID: PMCPMC2713467): 667-676https://doi.org/10.1182/blood-2009-02-205492
        • Field J.J.
        • Lin G.
        • Okam M.M.
        • Majerus E.
        • Keefer J.
        • Onyekwere O.
        • et al.
        Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson.
        Blood. 2013; 121 (Epub 2013/02/05) (PubMed Central PMCID: PMCPMC3637009): 3329-3334https://doi.org/10.1182/blood-2012-11-465963
        • Scheuplein F.
        • Thariath A.
        • Macdonald S.
        • Truneh A.
        • Mashal R.
        • Schaub R.
        A humanized monoclonal antibody specific for invariant natural killer T (iNKT) cells for in vivo depletion.
        PLoS ONE. 2013; 8 (Epub 2013/10/03) (PubMed Central PMCID: PMCPMC3785425): e76692https://doi.org/10.1371/journal.pone.0076692
        • Majerus E.M.
        • Ataga K.I.
        • Vichinsky E.
        • Eaton C.A.
        • Mazanet R.
        • Nathan D.G.
        • et al.
        NKTT120 reduces iNKT cells without dose limiting toxicity in stable adult sickle cell patients in a phase 1 trial.
        Blood. 2014; 124: 2718
        • Johnson F.
        • Look A.
        • Gockerman J.
        • Ruggiero M.
        • Dalla-Pozza L.
        • Billings F.
        Bone-marrow transplantation in a patient with sickle-cell anemia.
        N Engl J Med. 1984; 311: 780-783https://doi.org/10.1056/NEJM198409203111207
        • Gluckman E.
        Allogeneic transplantation strategies including haploidentical transplantation in sickle cell disease.
        Hematology Am Soc Hematol Educ Program. 2013; 2013 (Epub 2013/12/10): 370-376https://doi.org/10.1182/asheducation-2013.1.370
        • Bernaudin F.
        • Socie G.
        • Kuentz M.
        • Chevret S.
        • Duval M.
        • Bertrand Y.
        • et al.
        Long-term results of related myeloablative stem-cell transplantation to cure sickle cell disease.
        Blood. 2007; 110: 2749-2756https://doi.org/10.1182/blood-2007-03-079665
        • Walters M.C.
        • De Castro L.M.
        • Sullivan K.M.
        • Krishnamurti L.
        • Kamani N.
        • Bredeson C.
        • et al.
        Indications and results of HLA-identical sibling hematopoietic cell transplantation for sickle cell disease.
        Biol Blood Marrow Transplant. 2016; 22 (Epub 2015/10/27): 207-211https://doi.org/10.1016/j.bbmt.2015.10.017
        • Fitzhugh C.D.
        • Abraham A.A.
        • Tisdale J.F.
        • Hsieh M.M.
        Hematopoietic stem cell transplantation for patients with sickle cell disease: progress and future directions.
        Hematol Oncol Clin North Am. 2014; 28 (Epub 2014/12/03) (PubMed Central PMCID: PMCPMC4254544): 1171-1185https://doi.org/10.1016/j.hoc.2014.08.014
        • Hsieh M.M.
        • Fitzhugh C.D.
        • Weitzel R.P.
        • Link M.E.
        • Coles W.A.
        • Zhao X.
        • et al.
        Nonmyeloablative HLA-matched siblingallogeneic hematopoietic stem cell transplantation for severesickle cell phenotype.
        JAMA. 2014; 312 (Epub 2014/07/25): 48-56https://doi.org/10.1001/jama.2014.7192
        • Hsieh M.
        • Kang E.
        • Fitzhugh C.
        • Link M.
        • Bolan C.
        • Kurlander R.
        • et al.
        Allogeneic hematopoietic stem-cell transplantation for sickle cell disease.
        N Engl J Med. 2009; 361: 2309-2317https://doi.org/10.1056/NEJMoa0904971
        • Saraf S.L.
        • Oh A.L.
        • Patel P.R.
        • Jalundhwala Y.
        • Sweiss K.
        • Koshy M.
        • et al.
        Nonmyeloablative stem cell transplantation with alemtuzumab/low-dose irradiation to cure and improve the quality of life of adults with sickle cell disease.
        Biol Blood Marrow Transplant. 2016; 22 (Epub 2015/09/09): 441-448https://doi.org/10.1016/j.bbmt.2015.08.036
        • Krishnamurti L.
        • Sullivan K.M.
        • Kamani N.R.
        • Waller E.K.
        • Abraham A.
        • Campigotto F.
        • et al.
        Results of a multicenter pilot investigation of bone marrow transplantation in adults with sickle cell disease (STRIDE).
        Blood. 2015; 126: 543
        • Mentzer W.C.
        • Heller S.
        • Pearle P.R.
        • Hackney E.
        • Vichinsky E.
        Availability of related donors for bone marrow transplantation in sickle cell anemia.
        Am J Pediatr Hematol Oncol. 1994; 16 (Epub 1994/02/01): 27-29
        • Mynarek M.
        • Bettoni da Cunha Riehm C.
        • Brinkmann F.
        • Weissenborn K.
        • Tell-Luersen M.
        • Heuft H.G.
        • et al.
        Normalized transcranial Doppler velocities, stroke prevention and improved pulmonary function after stem cell transplantation in children with sickle cell anemia.
        Klin Padiatr. 2013; 225 (Epub 2013/04/30): 127-132https://doi.org/10.1055/s-0033-1333754
        • Pasquini M.C.
        • Zhu X.
        Current uses and outcomes of hematopoietic stem cell transplantation: CIBMTR Summary Slides.
        • Shenoy S.
        • Eapen M.
        • Wu J.
        • Walters M.C.
        • Levine J.E.
        • Logan B.
        • et al.
        A multicenter phase ii trial of unrelated donor reduced intensity bone marrow transplantation for children with severe sickle cell disease (SCURT): results of the Blood and Marrow Transplant Clinical Trials Network (BMT CTN 0601) Study.
        2015
        • Justus D.
        • Perez-Albuerne E.
        • Dioguardi J.
        • Jacobsohn D.
        • Abraham A.
        Allogeneic donor availability for hematopoietic stem cell transplantation in children with sickle cell disease.
        Pediatr Blood Cancer. 2015; 62 (Epub 2015/02/11): 1285-1287https://doi.org/10.1002/pbc.25439
        • Gragert L.
        • Eapen M.
        • Williams E.
        • Freeman J.
        • Spellman S.
        • Baitty R.
        • et al.
        HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry.
        N Engl J Med. 2014; 371 (Epub 2014/07/24): 339-348https://doi.org/10.1056/NEJMsa1311707
        • Kamani N.R.
        • Walters M.C.
        • Carter S.
        • Aquino V.
        • Brochstein J.A.
        • Chaudhury S.
        • et al.
        Unrelated donor cord blood transplantation for children with severe sickle cell disease: results of one cohort from the phase II study from the Blood and Marrow Transplant Clinical Trials Network (BMT CTN).
        Biol Blood Marrow Transplant. 2012; 18 (Epub 2012/02/22) (PubMed Central PMCID: PMCPmc3618440): 1265-1272https://doi.org/10.1016/j.bbmt.2012.01.019
        • Bolanos-Meade J.
        • Fuchs E.J.
        • Luznik L.
        • Lanzkron S.M.
        • Gamper C.J.
        • Jones R.J.
        • et al.
        HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease.
        Blood. 2012; 120 (Epub 2012/09/08) (PubMed Central PMCID: PMCPmc3507140): 4285-4291https://doi.org/10.1182/blood-2012-07-438408
        • de la Fuente J.
        • O'Boyle F.
        • Harrington Y.
        • Bradshaw A.
        • Hing S.
        • Chakravorty S.
        • et al.
        Haploidentical BMT with a post-infusion of stem cells cyclophosphamide approach is feasible and leads to a high rate of donor engraftment in haemoglobinopathies allowing universal application of transplantation.
        Blood. 2015; 126: 4317
        • Dallas M.H.
        • Triplett B.
        • Shook D.R.
        • Hartford C.
        • Srinivasan A.
        • Laver J.
        • et al.
        Long-term outcome and evaluation of organ function in pediatric patients undergoing haploidentical and matched related hematopoietic cell transplantation for sickle cell disease.
        Biol Blood Marrow Transplant. 2013; 19 (Epub 2013/02/19): 820-830https://doi.org/10.1016/j.bbmt.2013.02.010
        • Sodani P.
        • Isgrò A.
        • Gaziev J.
        • Polchi P.
        • Paciaroni K.
        • Marziali M.
        • et al.
        Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from haploidentical mother to child with thalassemia.
        Blood. 2010; 115: 1296-1302https://doi.org/10.1182/blood-2009-05-218982
        • Hamill D.
        • Shenoy S.
        • Morris E.
        • Fabricatore S.
        • Brand P.
        • Ayello J.
        • et al.
        Robust donor chimerism and engraftment following familial haploidentical (FHI) (CD34 enriched and T-cell addback) allogeneic stem cell transplantation in patients with high risk sickle cell disease (SCD).
        Biol Blood Marrow Transplant. 2016; 22https://doi.org/10.1016/j.bbmt.2015.11.396
        • Le Blanc K.
        • Frassoni F.
        • Ball L.
        • Locatelli F.
        • Roelofs H.
        • Lewis I.
        • et al.
        Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study.
        Lancet. 2008; 371: 1579-1586https://doi.org/10.1016/s0140-6736(08)60690-x
        • Ball L.M.
        • Bernardo M.E.
        • Roelofs H.
        • Lankester A.
        • Cometa A.
        • Egeler R.M.
        • et al.
        Cotransplantation of ex vivo expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation.
        Blood. 2007; 110 (Epub 2007/07/20): 2764-2767https://doi.org/10.1182/blood-2007-04-087056
        • Wu Y.
        • Wang Z.
        • Cao Y.
        • Xu L.
        • Li X.
        • Liu P.
        • et al.
        Cotransplantation of haploidentical hematopoietic and umbilical cord mesenchymal stem cells with a myeloablative regimen for refractory/relapsed hematologic malignancy.
        Ann Hematol. 2013; (Epub 2013/07/12)https://doi.org/10.1007/s00277-013-1831-0
        • Wu K.H.
        • Sheu J.N.
        • Wu H.P.
        • Tsai C.
        • Sieber M.
        • Peng C.T.
        • et al.
        Cotransplantation of umbilical cord-derived mesenchymal stem cells promote hematopoietic engraftment in cord blood transplantation: a pilot study.
        Transplantation. 2012; (Epub 2013/01/01)https://doi.org/10.1097/TP.0b013e31827a93dd
        • Liu K.
        • Chen Y.
        • Zeng Y.
        • Xu L.
        • Liu D.
        • Chen H.
        • et al.
        Coinfusion of mesenchymal stromal cells facilitates platelet recovery without increasing leukemia recurrence in haploidentical hematopoietic stem cell transplantation: a randomized, controlled clinical study.
        Stem Cells Dev. 2011; 20 (Epub 2010/12/15): 1679-1685https://doi.org/10.1089/scd.2010.0447
        • Prasad V.K.
        • Lucas K.G.
        • Kleiner G.I.
        • Talano J.A.
        • Jacobsohn D.
        • Broadwater G.
        • et al.
        Efficacy and safety of ex vivo cultured adult human mesenchymal stem cells (Prochymal) in pediatric patients with severe refractory acute graft-versus-host disease in a compassionate use study.
        Biol Blood Marrow Transplant. 2011; 17 (Epub 2010/05/12): 534-541https://doi.org/10.1016/j.bbmt.2010.04.014
        • Macmillan M.L.
        • Blazar B.R.
        • DeFor T.E.
        • Wagner J.E.
        Transplantation of ex-vivo culture-expanded parental haploidentical mesenchymal stem cells to promote engraftment in pediatric recipients of unrelated donor umbilical cord blood: results of a phase I–II clinical trial.
        Bone Marrow Transplant. 2009; 43: 447-454https://doi.org/10.1038/bmt.2008.348
        • Ringden O.
        • Uzunel M.
        • Rasmusson I.
        • Remberger M.
        • Sundberg B.
        • Lonnies H.
        • et al.
        Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease.
        Transplantation. 2006; 81 (Epub 2006/05/30): 1390-1397https://doi.org/10.1097/01.tp.0000214462.63943.14
        • Lazarus H.M.
        • Koc O.N.
        • Devine S.M.
        • Curtin P.
        • Maziarz R.T.
        • Holland H.K.
        • et al.
        Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients.
        Biol Blood Marrow Transplant. 2005; 11: 389-398https://doi.org/10.1016/j.bbmt.2005.02.001
        • Kharbanda S.
        • Smith A.R.
        • Hutchinson S.K.
        • McKenna D.H.
        • Ball J.B.
        • Lamb Jr, L.S.
        • et al.
        Unrelated donor allogeneic hematopoietic stem cell transplantation for patients with hemoglobinopathies using a reduced-intensity conditioning regimen and third-party mesenchymal stromal cells.
        Biol Blood Marrow Transplant. 2014; 20 (Epub 2013/12/29) (PubMed Central PMCID: PMCPMC3998675): 581-586https://doi.org/10.1016/j.bbmt.2013.12.564
        • Ruggeri A.
        • Eapen M.
        • Scaravadou A.
        • Cairo M.S.
        • Bhatia M.
        • Kurtzberg J.
        • et al.
        Umbilical cord blood transplantation for children with thalassemia and sickle.
        Biol Blood Marrow Transplant. 2011; 17 (Epub 2011/02/01) (PubMed Central PMCID: PMCPmc3395002): 1375-1382https://doi.org/10.1016/j.bbmt.2011.01.012
        • Peled T.
        • Shoham H.
        • Aschengrau D.
        • Yackoubov D.
        • Frei G.
        • Rosenheimer G.N.
        • et al.
        Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment.
        Exp Hematol. 2012; 40 (e1; Epub 2011/12/27): 342-355https://doi.org/10.1016/j.exphem.2011.12.005
        • Horwitz M.E.
        • Frassoni F.
        Improving the outcome of umbilical cord blood transplantation through ex vivo expansion or graft manipulation.
        Cytotherapy. 2015; 17 (Epub 2015/03/18): 730-738https://doi.org/10.1016/j.jcyt.2015.02.004
        • Bernaudin F.
        • Verlhac S.
        • Arnaud C.
        • Kamdem A.
        • Hau I.
        • Leveille E.
        • et al.
        Long-term treatment follow-up of children with sickle cell disease monitored with abnormal transcranial Doppler velocities.
        Blood. 2016; 127 (Epub 2016/02/07): 1814-1822https://doi.org/10.1182/blood-2015-10-675231
        • Le P.Q.
        • Gulbis B.
        • Dedeken L.
        • Dupont S.
        • Vanderfaeillie A.
        • Heijmans C.
        • et al.
        Survival among children and adults with sickle cell disease in Belgium: benefit from hydroxyurea treatment.
        Pediatr Blood Cancer. 2015; 62 (Epub 2015/07/16): 1956-1961https://doi.org/10.1002/pbc.25608
        • Miller S.T.
        • Wright E.
        • Abboud M.
        • Berman B.
        • Files B.
        • Scher C.D.
        • et al.
        Impact of chronic transfusion on incidence of pain and acute chest syndrome during the Stroke Prevention Trial (STOP) in sickle-cell anemia.
        J Pediatr. 2001; 139 (Epub 2001/12/18): 785-789https://doi.org/10.1067/mpd.2001.119593
        • Adams R.
        • McKie V.
        • Hsu L.
        • Files B.
        • Vichinsky E.
        • Pegelow C.
        • et al.
        Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography.
        N Engl J Med. 1998; 339: 5-11https://doi.org/10.1056/NEJM199807023390102
        • Ware R.E.
        • Davis B.R.
        • Schultz W.H.
        • Brown R.C.
        • Aygun B.
        • Sarnaik S.
        • et al.
        Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial.
        Lancet. 2016; 387 (Epub 2015/12/17): 661-670https://doi.org/10.1016/s0140-6736(15)01041-7
        • Steinberg M.H.
        • McCarthy W.F.
        • Castro O.
        • Ballas S.K.
        • Armstrong F.D.
        • Smith W.
        • et al.
        The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: a 17.5 year follow-up.
        Am J Hematol. 2010; 85 (Epub 2010/06/01) (PubMed Central PMCID: PMCPMC2879711): 403-408https://doi.org/10.1002/ajh.21699
        • Ware R.E.
        • Helms R.W.
        Stroke With Transfusions Changing to Hydroxyurea (SWiTCH).
        Blood. 2012; 119 (Epub 2012/02/10) (PubMed Central PMCID: PMCPMC3350359): 3925-3932https://doi.org/10.1182/blood-2011-11-392340
        • Walters M.
        • Storb R.
        • Patience M.
        • Leisenring W.
        • Taylor T.
        • Sanders J.
        • et al.
        Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Multicenter investigation of bone marrow transplantation for sickle cell disease.
        Blood. 2000; 95: 1918-1924
        • Cavazzana-Calvo M.
        • Payen E.
        • Negre O.
        • Wang G.
        • Hehir K.
        • Fusil F.
        • et al.
        Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia.
        Nature. 2010; 467: 318-322https://doi.org/10.1038/nature09328
        • Cavazzana M.R.
        • Payen J.
        • Suarez E.
        • Beuzard F.
        • Touzot Y.
        • Cavallesco F.
        • et al.
        Outcomes of gene therapy for severe sickle disease and beta-thalassemia major via transplantation of autologous hematopoietic stem cells transduced ex vivo with a lentiviral beta AT87Q-globin vector.
        Blood. 2015; 126: 202
        • Kanter J.W.
        • Hsieh M.C.
        • Thompson M.
        • Krishnamurti A.A.
        • Kwiatkowski L.
        • Kamble J.
        • et al.
        Initial results from study Hgb-206: a phase 1 study evaluating gene therapy by transplantation of autologous CD34+ stem cells transduced ex vivo with the lentiglobin BB305 lentiviral vector in subjects with severe sickle cell disease.
        Blood. 2015; 126: 3233
        • Howe S.
        • Mansour M.
        • Schwarzwaelder K.
        • Bartholomae C.
        • Hubank M.
        • Kempski H.
        • et al.
        Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients.
        J Clin Invest. 2008; 118 (PubMed Central PMCID: PMCPMC2496964): 3143-3150https://doi.org/10.1172/JCI35798
        • Ryu B.
        • Evans-Galea M.
        • Gray J.
        • Bodine D.
        • Persons D.
        • Nienhuis A.
        An experimental system for the evaluation of retroviral vector design to diminish the risk for proto-oncogene activation.
        Blood. 2008; 111 (PubMed Central PMCID: PMCPMC2234041): 1866-1875https://doi.org/10.1182/blood-2007-04-085506
        • Hoban M.D.
        • Cost G.J.
        • Mendel M.C.
        • Romero Z.
        • Kaufman M.L.
        • Joglekar A.V.
        • et al.
        Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.
        Blood. 2015; 125 (Epub 2015/03/04) (PubMed Central PMCID: PMCPMC4408287): 2597-2604https://doi.org/10.1182/blood-2014-12-615948
        • Peranteau W.H.
        • Hayashi S.
        • Abdulmalik O.
        • Chen Q.
        • Merchant A.
        • Asakura T.
        • et al.
        Correction of murine hemoglobinopathies by prenatal tolerance induction and postnatal nonmyeloablative allogeneic BM transplants.
        Blood. 2015; 126 (Epub 2015/07/01) (PubMed Central PMCID: PMCPMC4559936): 1245-1254https://doi.org/10.1182/blood-2015-03-636803
        • Liang P.
        • Xu Y.
        • Zhang X.
        • Ding C.
        • Huang R.
        • Zhang Z.
        • et al.
        CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes.
        Protein Cell. 2015; 6 (Epub 2015/04/22) (PubMed Central PMCID: PMCPMC4417674): 363-372https://doi.org/10.1007/s13238-015-0153-5
        • Gerdemann U.
        • Katari U.L.
        • Papadopoulou A.
        • Keirnan J.M.
        • Craddock J.A.
        • Liu H.
        • et al.
        Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant.
        Mol Ther. 2013; 21 (Epub 2013/06/21) (PubMed Central PMCID: PMCPMC3831033): 2113-2121https://doi.org/10.1038/mt.2013.151
        • Leen A.M.
        • Christin A.
        • Myers G.D.
        • Liu H.
        • Cruz C.R.
        • Hanley P.J.
        • et al.
        Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation.
        Blood. 2009; 114 (Epub 2009/08/25) (PubMed Central PMCID: PMCPmc2774556): 4283-4292https://doi.org/10.1182/blood-2009-07-232454
        • Leen A.M.
        • Bollard C.M.
        • Mendizabal A.M.
        • Shpall E.J.
        • Szabolcs P.
        • Antin J.H.
        • et al.
        Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation.
        Blood. 2013; 121 (Epub 2013/04/24) (PubMed Central PMCID: PMCPmc3695359): 5113-5123https://doi.org/10.1182/blood-2013-02-486324
        • Sato K.
        • Ozaki K.
        • Mori M.
        • Muroi K.
        • Ozawa K.
        Mesenchymal stromal cells for graft-versus-host disease: basic aspects and clinical outcomes.
        J Clin Exp Hematop. 2010; 50 (Epub 2010/12/03): 79-89
        • Brunstein C.G.
        • Miller J.S.
        • McKenna D.H.
        • Hippen K.L.
        • DeFor T.E.
        • Sumstad D.
        • et al.
        Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect.
        Blood. 2016; 127 (Epub 2015/11/14) (PubMed Central PMCID: PMCPMC4768428): 1044-1051https://doi.org/10.1182/blood-2015-06-653667