Advertisement
Perspective| Volume 18, ISSUE 2, P151-159, February 2016

International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials

Published:December 23, 2015DOI:https://doi.org/10.1016/j.jcyt.2015.11.008

      Abstract

      Mesenchymal stromal cells (MSCs) as a pharmaceutical for ailments characterized by pathogenic autoimmune, alloimmune and inflammatory processes now cover the spectrum of early- to late-phase clinical trials in both industry and academic sponsored studies. There is a broad consensus that despite different tissue sourcing and varied culture expansion protocols, human MSC-like cell products likely share fundamental mechanisms of action mediating their anti-inflammatory and tissue repair functionalities. Identification of functional markers of potency and reduction to practice of standardized, easily deployable methods of measurements of such would benefit the field. This would satisfy both mechanistic research as well as development of release potency assays to meet Regulatory Authority requirements for conduct of advanced clinical studies and their eventual registration. In response to this unmet need, the International Society for Cellular Therapy (ISCT) addressed the issue at an international workshop in May 2015 as part of the 21st ISCT annual meeting in Las Vegas. The scope of the workshop was focused on discussing potency assays germane to immunomodulation by MSC-like products in clinical indications targeting immune disorders. We here provide consensus perspective arising from this forum. We propose that focused analysis of selected MSC markers robustly deployed by in vitro licensing and metricized with a matrix of assays should be responsive to requirements from Regulatory Authorities. Workshop participants identified three preferred analytic methods that could inform a matrix assay approach: quantitative RNA analysis of selected gene products; flow cytometry analysis of functionally relevant surface markers and protein-based assay of secretome. We also advocate that potency assays acceptable to the Regulatory Authorities be rendered publicly accessible in an “open-access” manner, such as through publication or database collection.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Dominici M.
        • Le Blanc K.
        • Mueller I.
        • Slaper-Cortenbach I.
        • Marini F.
        • Krause D.
        • et al.
        Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
        Cytotherapy. 2006; 8: 315-317
        150
        • Phinney D.G.
        • Galipeau J.
        • Krampera M.
        • Martin I.
        • Shi Y.
        • Sensebe L.
        MSCs: science and trials.
        Nat Med. 2013; 19: 812
        432
        • Wang Y.
        • Chen X.
        • Cao W.
        • Shi Y.
        Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications.
        Nat Immunol. 2014; 15: 1009-1016
        446
        • Mendicino M.
        • Bailey A.M.
        • Wonnacott K.
        • Puri R.K.
        • Bauer S.R.
        MSC-based product characterization for clinical trials: an FDA perspective.
        Cell Stem Cell. 2014; 14: 141-145
        439
        • Salmikangas P.
        • Menezes-Ferreira M.
        • Reischl I.
        • Tsiftsoglou A.
        • Kyselovic J.
        • Borg J.J.
        • et al.
        Manufacturing, characterization and control of cell-based medicinal products: challenging paradigms toward commercial use.
        Regen Med. 2015; 10: 65-78
        447
        • Lehman N.
        • Cutrone R.
        • Raber A.
        • Perry R.
        • Van't Hof W.
        • Deans R.
        • et al.
        Development of a surrogate angiogenic potency assay for clinical-grade stem cell production.
        Cytotherapy. 2012; 14: 994-1004
        440
        • Kebriaei P.
        • Isola L.
        • Bahceci E.
        • Holland K.
        • Rowley S.
        • McGuirk J.
        • et al.
        Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease.
        Biol Blood Marrow Transplant. 2009; 15: 804-811
        149
        • Galipeau J.
        • Krampera M.
        The challenge of defining mesenchymal stromal cell potency assays and their potential use as release criteria.
        Cytotherapy. 2015; 17: 125-127
        445
        • Krampera M.
        • Galipeau J.
        • Shi Y.
        • Tarte K.
        • Sensebe L.
        Immunological characterization of multipotent mesenchymal stromal cells—the International Society for Cellular Therapy (ISCT) working proposal.
        Cytotherapy. 2013; 15: 1054-1061
        250
        • Deans R.
        Towards the creation of a standard MSC line as a calibration tool.
        Cytotherapy. 2015; 17: 1167-1168
        443
        • Salem B.
        • Miner S.
        • Hensel N.F.
        • Battiwalla M.
        • Keyvanfar K.
        • Stroncek D.F.
        • et al.
        Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency.
        Cytotherapy. 2015; 17: 1675
        448
        • Krampera M.
        Mesenchymal stromal cell “licensing”: a multistep process.
        Leukemia. 2011; 25: 1408-1414
        138
        • Francois M.
        • Romieu-Mourez R.
        • Li M.
        • Galipeau J.
        Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation.
        Mol Ther. 2012; 20: 187-195
        15
        • Menard C.
        • Pacelli L.
        • Bassi G.
        • Dulong J.
        • Bifari F.
        • Bezier I.
        • et al.
        Clinical-grade mesenchymal stromal cells produced under various good manufacturing practice processes differ in their immunomodulatory properties: standardization of immune quality controls.
        Stem Cells Dev. 2013; 22: 1789-1801
        4443668498
        • Chinnadurai R.
        • Copland I.B.
        • Ng S.
        • Garcia M.
        • Prasad M.
        • Arafat D.
        • et al.
        Mesenchymal stromal cells derived from Crohn's patients deploy indoleamine 2,3-dioxygenase mediated immune suppression, independent of autophagy.
        Mol Ther. 2015; 23: 1248-1261
        416
        • Viswanathan S.
        • Keating A.
        • Deans R.
        • Hematti P.
        • Prockop D.
        • Stroncek D.F.
        • et al.
        Soliciting strategies for developing cell-based reference materials to advance mesenchymal stromal cell research and clinical translation.
        Stem Cells Dev. 2014; 23: 1157-1167
        4414027980
        • Croitoru-Lamoury J.
        • Lamoury F.M.
        • Zaunders J.J.
        • Veas L.A.
        • Brew B.J.
        Human mesenchymal stem cells constitutively express chemokines and chemokine receptors that can be upregulated by cytokines, IFN-beta, and Copaxone.
        J Interferon Cytokine Res. 2007; 27: 53-64
        344
        • Chamberlain G.
        • Smith H.
        • Rainger G.E.
        • Middleton J.
        Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear.
        PLoS ONE. 2011; 6: e25663
        3453182247
        • Feng Y.
        • Yu H.M.
        • Shang D.S.
        • Fang W.G.
        • He Z.Y.
        • Chen Y.H.
        The involvement of CXCL11 in bone marrow-derived mesenchymal stem cell migration through human brain microvascular endothelial cells.
        Neurochem Res. 2014; 39: 700-706
        346
        • Tang K.C.
        • Trzaska K.A.
        • Smirnov S.V.
        • Kotenko S.V.
        • Schwander S.K.
        • Ellner J.J.
        • et al.
        Down-regulation of MHC II in mesenchymal stem cells at high IFN-gamma can be partly explained by cytoplasmic retention of CIITA.
        J Immunol. 2008; 180: 1826-1833
        347
        • Ren G.
        • Zhao X.
        • Zhang L.
        • Zhang J.
        • L'Huillier A.
        • Ling W.
        • et al.
        Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression.
        J Immunol. 2010; 184: 2321-2328
        3532881946
        • Kimura K.
        • Nagano M.
        • Salazar G.
        • Yamashita T.
        • Tsuboi I.
        • Mishima H.
        • et al.
        The role of CCL5 in the ability of adipose tissue-derived mesenchymal stem cells to support repair of ischemic regions.
        Stem Cells Dev. 2014; 23: 488-501
        3493928761
        • Yang X.
        • Du J.
        • Xu X.
        • Xu C.
        • Song W.
        IFN-gamma-secreting-mesenchymal stem cells exert an antitumor effect in vivo via the TRAIL pathway.
        J Immunol Res. 2014; 2014: 318098
        3504058226
        • Romieu-Mourez R.
        • Francois M.
        • Boivin M.N.
        • Bouchentouf M.
        • Spaner D.E.
        • Galipeau J.
        Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype.
        J Immunol. 2009; 182: 7963-7973
        351
        • Schenk S.
        • Mal N.
        • Finan A.
        • Zhang M.
        • Kiedrowski M.
        • Popovic Z.
        • et al.
        Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor.
        Stem Cells. 2007; 25: 245-251
        352
        • Chinnadurai R.
        • Copland I.B.
        • Patel S.R.
        • Galipeau J.
        IDO-independent suppression of T cell effector function by IFN-gamma-licensed human mesenchymal stromal cells.
        J Immunol. 2014; 192: 1491-1501
        217
        • Bai L.
        • Lennon D.P.
        • Caplan A.I.
        • DeChant A.
        • Hecker J.
        • Kranso J.
        • et al.
        Hepatocyte growth factor mediates mesenchymal stem cell-induced recovery in multiple sclerosis models.
        Nat Neurosci. 2012; 15: 862-870
        3563427471
        • Francois M.
        • Birman E.
        • Forner K.A.
        • Gaboury L.
        • Galipeau J.
        Adoptive transfer of mesenchymal stromal cells accelerates intestinal epithelium recovery of irradiated mice in an interleukin-6-dependent manner.
        Cytotherapy. 2012; 14: 1164-1170
        4
        • Naji A.
        • Rouas-Freiss N.
        • Durrbach A.
        • Carosella E.D.
        • Sensebe L.
        • Deschaseaux F.
        Concise review: combining human leukocyte antigen G and mesenchymal stem cells for immunosuppressant biotherapy.
        Stem Cells. 2013; 31: 2296-2303
        357
        • Rafei M.
        • Hsieh J.
        • Fortier S.
        • Li M.
        • Yuan S.
        • Birman E.
        • et al.
        Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction.
        Blood. 2008; 112: 4991-4998
        57
        • Bladergroen B.A.
        • Meijer C.J.
        • ten Berge R.L.
        • Hack C.E.
        • Muris J.J.
        • Dukers D.F.
        • et al.
        Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system?.
        Blood. 2002; 99: 232-237
        386
        • Li H.
        • Jiang Y.
        • Jiang X.
        • Guo X.
        • Ning H.
        • Li Y.
        • et al.
        CCR7 guides migration of mesenchymal stem cell to secondary lymphoid organs: a novel approach to separate GvHD from GvL effect.
        Stem Cells. 2014; 32: 1890-1903
        364
        • Kagiwada H.
        • Yashiki T.
        • Ohshima A.
        • Tadokoro M.
        • Nagaya N.
        • Ohgushi H.
        Human mesenchymal stem cells as a stable source of VEGF-producing cells.
        J Tissue Eng Regen Med. 2008; 2: 184-189
        365
        • Hung S.C.
        • Pochampally R.R.
        • Hsu S.C.
        • Sanchez C.
        • Chen S.C.
        • Spees J.
        • et al.
        Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo.
        PLoS ONE. 2007; 2: e416
        3661855077
        • Campeau P.M.
        • Rafei M.
        • Boivin M.N.
        • Sun Y.
        • Grabowski G.A.
        • Galipeau J.
        Characterization of Gaucher disease bone marrow mesenchymal stromal cells reveals an altered inflammatory secretome.
        Blood. 2009; 114: 3181-3190
        3682925728
        • Podechard N.
        • Fardel O.
        • Corolleur M.
        • Bernard M.
        • Lecureur V.
        Inhibition of human mesenchymal stem cell-derived adipogenesis by the environmental contaminant benzo(a)pyrene.
        Toxicol in Vitro. 2009; 23: 1139-1144
        384
        • Qi Y.
        • Jiang D.
        • Sindrilaru A.
        • Stegemann A.
        • Schatz S.
        • Treiber N.
        • et al.
        TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds.
        J Invest Dermatol. 2014; 134: 526-537
        369
        • Casey M.L.
        • MacDonald P.C.
        Keratinocyte growth factor expression in the mesenchymal cells of human amnion.
        J Clin Endocrinol Metab. 1997; 82: 3319-3323
        370
        • Greenbaum A.
        • Hsu Y.M.
        • Day R.B.
        • Schuettpelz L.G.
        • Christopher M.J.
        • Borgerding J.N.
        • et al.
        CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance.
        Nature. 2013; 495: 227-230
        3823600148
        • Soland M.A.
        • Bego M.
        • Colletti E.
        • Zanjani E.D.
        • St Jeor S.
        • Porada C.D.
        • et al.
        Mesenchymal stem cells engineered to inhibit complement-mediated damage.
        PLoS ONE. 2013; 8: e60461
        3813608620
        • Yoo S.W.
        • Chang D.Y.
        • Lee H.S.
        • Kim G.H.
        • Park J.S.
        • Ryu B.Y.
        • et al.
        Immune following suppression mesenchymal stem cell transplantation in the ischemic brain is mediated by TGF-beta.
        Neurobiol Dis. 2013; 58: 249-257
        385
        • Brooke G.
        • Tong H.
        • Levesque J.P.
        • Atkinson K.
        Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta.
        Stem Cells Dev. 2008; 17: 929-940
        378
        • Ries C.
        • Egea V.
        • Karow M.
        • Kolb H.
        • Jochum M.
        • Neth P.
        MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines.
        Blood. 2007; 109: 4055-4063
        377
        • Li Y.
        • Lin F.
        Mesenchymal stem cells are injured by complement after their contact with serum.
        Blood. 2012; 120: 3436-3443
        3763482856
        • Yang K.
        • Wang J.
        • Xiang A.P.
        • Zhan X.
        • Wang Y.
        • Wu M.
        • et al.
        like receptors control the survival of mesenchymal stem cells.
        Cell Death Dis. 2013; 4: e967
        3753877571
        • Schweizer R.
        • Kamat P.
        • Schweizer D.
        • Dennler C.
        • Zhang S.
        • Schnider J.T.
        • et al.
        Bone marrow-derived mesenchymal stromal cells improve vascular regeneration and reduce leukocyte-endothelium activation in critical ischemic murine skin in a dose-dependent manner.
        Cytotherapy. 2014; 16: 1345-1360
        374
        • Catrysse L.
        • Vereecke L.
        • Beyaert R.
        • van Loo G.
        A20 in inflammation and autoimmunity.
        Trends Immunol. 2014; 35: 22-31
        373
        • Francois M.
        • Copland I.B.
        • Yuan S.
        • Romieu-Mourez R.
        • Waller E.K.
        • Galipeau J.
        Cryopreserved mesenchymal stromal cells display impaired immunosuppressive properties as a result of heat-shock response and impaired interferon-gamma licensing.
        Cytotherapy. 2012; 14: 147-152
        113279133
        • Giuliani M.
        • Bennaceur-Griscelli A.
        • Nanbakhsh A.
        • Oudrhiri N.
        • Chouaib S.
        • Azzarone B.
        • et al.
        TLR ligands stimulation protects MSC from NK killing.
        Stem Cells. 2014; 32: 290-300
        372
        • Ringe J.
        • Strassburg S.
        • Neumann K.
        • Endres M.
        • Notter M.
        • Burmester G.R.
        • et al.
        Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2.
        J Cell Biochem. 2007; 101: 135-146
        362
        • Gieseke F.
        • Bohringer J.
        • Bussolari R.
        • Dominici M.
        • Handgretinger R.
        • Muller I.
        Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells.
        Blood. 2010; 116: 3770-3779
        361
        • Wei F.Y.
        • Leung K.S.
        • Li G.
        • Qin J.
        • Chow S.K.
        • Huang S.
        • et al.
        Low intensity pulsed ultrasound enhanced mesenchymal stem cell recruitment through stromal derived factor-1 signaling in fracture healing.
        PLoS ONE. 2014; 9: e106722
        3604152330
        • Hall S.R.
        • Tsoyi K.
        • Ith B.
        • Padera Jr, R.F.
        • Lederer J.A.
        • Wang Z.
        • et al.
        Mesenchymal stromal cells improve survival during sepsis in the absence of heme oxygenase-1: the importance of neutrophils.
        Stem Cells. 2013; 31: 397-407
        3593572335
        • Egea V.
        • Zahler S.
        • Rieth N.
        • Neth P.
        • Popp T.
        • Kehe K.
        • et al.
        Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling.
        Proc Natl Acad Sci U S A. 2012; 109: E309-16
        3583277529
        • Ortiz L.A.
        • Dutreil M.
        • Fattman C.
        • Pandey A.C.
        • Torres G.
        • Go K.
        • et al.
        Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury.
        Proc Natl Acad Sci U S A. 2007; 104 (PMID 17569781; 4491891813): 11002-11007