Advertisement

Ex vivo expansion of natural killer cells from human peripheral blood mononuclear cells co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies

Published:November 05, 2015DOI:https://doi.org/10.1016/j.jcyt.2015.09.011

      Abstract

      Background aims. This study developed a new method to expand CD3CD56+ natural killer (NK) cells from human peripheral blood mononuclear cells (PBMCs) without feeder cells for clinical trials. Methods. PBMCs from healthy subjects were co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies and cultured for14 days in newly developed NKGM-1 medium containing autologous plasma and interleukin-2. Expanded NK cells were examined for cell number, phenotype, in vitro and in vivo cytotoxicity and interferon (IFN)-γ secretion. We also evaluated the proliferative ability of NK cells after cryopreservation. A patient with advanced pancreatic cancer was treated with autologous-expanded NK cells through the use of this method in combination with chemotherapy. Results. Expanded NK cells expressed higher levels of activating molecules compared with resting NK cells and exhibited potent cytotoxicity against K562 cells and IFN-γ secretion by cytokine stimulation. Significant anti-tumor activity was observed in immunodeficient mice injected with the human pancreatic cancer cell line BxPC-3. Large-scale cultures generated a median 5.7 × 109 NK cells from 20 mL of peripheral blood (n = 38) after 14 days of culture and 8.4 × 109 NK cells after 18 days of culture through the use of a cryopreservation procedure. The number of NK cells and cytotoxic activity in the peripheral blood of the patient with pancreatic cancer greatly increased, and successful clinical responses were observed after multiple infusions of expanded NK cells. Conclusions. These data demonstrate that this simple and safe methodology for the ex vivo expansion of NK cells can be used for cancer immunotherapy.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Trinchieli G.
        Biology of natural killer cells.
        Adv Immunol. 1989; 47: 187-376
        2683611
        • Lanier L.L.
        Natural killer cell receptor signaling.
        Curr Opin Immunol. 2003; 15: 308-314
        12787756
        • Long E.O.
        • Kim H.S.
        • Liu D.
        • Peterson M.E.
        • Rajagopalan S.
        Controlling natural killer cell responses: integration of signals for activation and inhibition.
        Annu Rev Immunol. 2013; 31: 227-258
        23516982
        • Campbell K.S.
        • Purdy A.K.
        Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations.
        Immunology. 2011; 132: 315-325
        21214544
        • Morreta A.
        • Bottino C.
        • Vitale M.
        • Pende D.
        • Cantoni C.
        • Mingari M.C.
        • et al.
        Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis.
        Annu Rev Immunol. 2001; 19: 197-223
        11244035
        • Kärre K.
        • Ljunggren H.G.
        • Piontek G.
        • Kiessling R.
        Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy.
        Nature. 1986; 319: 675-678
        3951539
        • Kärre K.
        NK cells, MHC class I molecules and the missing self.
        Scand J Immunol. 2002; 55: 221-228
        12787756
        • Sutlu T.
        • Alici E.
        Natural killer cell-based immunotherapy in cancer: current insights and future prospects.
        J Intern Med. 2009; 266: 154-181
        19614820
        • Bachanova V.
        • Miller J.S.
        NK cells in therapy of cancer.
        Crit Rev Oncog. 2014; 19: 133-141
        24941379
        • Cheng M.
        • Chen Y.
        • Xiao W.
        • Sun R.
        • Tian Z.
        NK cell-based immunotherapy for malignant diseases.
        Cell Mol Immunol. 2013; 10: 230-252
        23604045
        • Childs R.W.
        • Berg M.
        Bringing natural killer cells to the clinic: ex vivo manipulation.
        Hematology Am Soc Hematol Educ Program. 2013; 2013: 234-246
        24319186
        • Parkhurst M.R.
        • Riley J.P.
        • Dudley M.E.
        • Rosenberg S.A.
        Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression.
        Clin Cancer Res. 2011; 17: 6287-6297
        21844012
        • Berg M.
        • Lundqvist A.
        • McCoy Jr, P.
        • Samsel L.
        • Fan Y.
        • Tawab A.
        • et al.
        Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells.
        Cytotherapy. 2009; 11: 341-355
        19308771
        • Fujisaki H.
        • Kakuda H.
        • Shimasaki N.
        • Imai C.
        • Ma J.
        • Lockey T.
        • et al.
        Expansion of highly cytotoxic human natural killer cells for cancer cell therapy.
        Cancer Res. 2009; 69: 4010-4017
        19383914
        • Denman C.J.
        • Senyukov V.V.
        • Somanchi S.S.
        • Phatarpekar P.V.
        • Kopp L.M.
        • Johnson J.L.
        • et al.
        Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells.
        PLoS ONE. 2012; 7: e30264
        22279576
        • Yanagisawa S.
        • Kadouchi I.
        • Yokomori K.
        • Hirose M.
        • Hakozaki M.
        • Hojo H.
        • et al.
        Identification and metastatic potential of tumor-initiating cells in malignant rhabdoid tumor of the kidney.
        Clin Cancer Res. 2009; 5: 3014-3022
        19383826
        • Tezuka Y.
        • Endo S.
        • Matsui A.
        • Sato A.
        • Saito K.
        • Semba K.
        • et al.
        Potential anti-tumor effect of IFN-λ2 (IL-28A) against human lung cancer cells.
        Lung Cancer. 2012; 78: 185-192
        23021208
        • Iwamoto S.
        • Iwai S.
        • Tsujiyama K.
        • Kurahashi C.
        • Takeshita K.
        • Naoe M.
        • et al.
        TNF-α drives human CD14+ monocytes to differentiate into CD70+ dendritic cells evoking Th1 and Th17 responses.
        J Immunol. 2007; 179: 1449-1457
        17641010
        • Inoue Y.
        • Kiryu S.
        • Izawa K.
        • Watanabe M.
        • Tojo A.
        • Ohtomo K.
        Comparison of subcutaneous and intraperitoneal injection of D-luciferin for in vivo bioluminescence imaging.
        Eur J Nucl Med Mol Imaging. 2009; 36: 771-779
        19096841
        • Sato A.
        • Ohtsuki M.
        • Hata M.
        • Kobayashi E.
        • Murakami T.
        Antitumor activity of interferon (IFN)-lambda in murine tumor models.
        J Immunol. 2006; 176: 7686-7694
        16751416
        • Murakami T.
        • Sato A.
        • Chun N.A.L.
        • Hara M.
        • Naito Y.
        • Kobayashi Y.
        • et al.
        Transcriptional modulation using HDACi depsipeptide promotes immune cell-mediated tumor destruction of murine B16 melanoma.
        J Invest Dermatol. 2008; 128: 1506-1516
        18185535
        • Masuyama J.
        • Kaga S.
        • Kano S.
        • Minota S.
        A novel costimulation pathway via the 4C8 antigen for the induction of CD4+ regulatory T cells.
        J Immunol. 2002; 169: 3710-3716
        12244164
        • Watanabe T.
        • Masuyama J.
        • Sohma Y.
        • Inazawa H.
        • Horie K.
        • Kojima K.
        • et al.
        CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells.
        Clin Immunol. 2006; 120: 247-259
        16797237
        • Hale G.
        • Xia M.Q.
        • Tighe H.P.
        • Dyer M.J.
        • Waldmann H.
        The CAMPATH-1 antigen (CDw52).
        Tissue Antigens. 1990; 35: 118-127
        2165283
        • Masuyama J.
        • Yoshio T.
        • Suzuki K.
        • Kitagawa S.
        • Iwamoto M.
        • Kamimura T.
        • et al.
        Characterization of the 4C8 antigen involved in transendothelial migration of CD26hi T cells after tight adhesion to human umbilical vein endothelial cell monolayers.
        J Exp Med. 1999; 189: 979-990
        10075981
        • Greenfield E.A.
        • Nguyen K.A.
        • Kuchroo V.K.
        CD28/B7 costimulation: a review.
        Crit Rev Immunol. 1998; 18: 389-418
        9784967
        • Wing M.G.
        • Moreau T.
        • Greenwood J.
        • Smith R.M.
        • Hale G.
        • Isaacs J.
        • et al.
        Mechanism of first-dose cytokine-release syndrome by CAMPATH 1-H: involvement of CD16 (FcgammaRIII) and CD11a/CD18 (LFA-1) on NK cells.
        J Clin Invest. 1996; 98: 2819-2826
        8981930
        • Takada M.
        • Terunuma H.
        • Deng X.
        • Dewan M.Z.
        • Saji S.
        • Kuroi K.
        • et al.
        Refractory lung metastasis from breast cancer treated with multidisciplinary therapy including an immunological approach.
        Breast Cancer. 2011; 18: 64-67
        20354831
        • Hale G.
        Synthetic peptide mimotope of the CAMPATH-1 (CD52) antigen, a small glycosylphosphatidylinositol-anchored glycoprotein.
        Immunotechnology. 1995; 1: 175-187
        9373346
        • Warner J.L.
        • Arnason J.E.
        Alemtuzumab use in relapsed and refractory chronic lymphocytic leukemia: a history and discussion of future rational use.
        Ther Adv Hematol. 2012; 3: 375-389
        23606939
        • Zinzani P.L.
        • Corradini P.
        • Gallamini A.
        • Grossi A.
        • Lazzarino M.
        • Marchetti M.
        • et al.
        Overview of alemtuzumab therapy for the treatment of T-cell lymphomas.
        Leuk Lymphoma. 2012; 53: 789-795
        21980956
        • Coles A.J.
        • Twyman C.L.
        • Arnold D.L.
        • Cohen J.A.
        • Confavreux C.
        • Fox E.J.
        • et al.
        Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomized controlled phase 3 trial.
        Lancet. 2012; 380: 1829-1839
        23122650
        • Coles A.J.
        Alemtuzumab therapy for multiple sclerosis.
        Neurother. 2013; 10: 29-33
        23184314
        • Rowan W.C.
        • Hale G.
        • Tite J.P.
        • Brett S.J.
        Cross-linking of the CAMPATH-1 antigen (CD52) triggers activation of normal human T lymphocytes.
        Int Immunol. 1995; 7: 69-77
        7718516
        • Levitsky J.
        • Leventhal J.R.
        • Miller J.
        • Huang X.
        • Chen L.
        • Chandrasekaran D.
        • et al.
        Favorable effects of alemtuzumab on allospecific regulatory T-cell generation.
        Hum Immunol. 2012; 73: 141-149
        22154724
        • Bandala-Sanchez E.
        • Zhang Y.
        • Reinwald S.
        • Dromey J.A.
        • Lee B.H.
        • Qian J.
        • et al.
        T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10.
        Nat Immunol. 2013; 14: 741-748
        23685786
        • Moreau T.
        • Coles A.
        • Wing M.
        • Isaacs J.
        • Hale G.
        • Waldmann H.
        • et al.
        Transient increase in symptoms associated with cytokine release in patients with multiple sclerosis.
        Brain. 1996; 119: 225-237
        8624684
        • Betters D.M.
        • Smith A.L.
        • Berg M.
        • Lundqvist A.
        • Childs R.W.
        In vitro expanded natural killer (NK) cells are more susceptible to Fas-mediated apoptosis compared to fresh and overnight IL-2 activated NK cells.
        Cancer Res. 2010; 70 (Abstract 1271)
        • Miller J.S.
        Therapeutic applications: natural killer cells in the clinic.
        Hematology Am Soc Hematol Educ Program. 2013; 2013: 247-253
        24319187
        • Smyth M.J.
        • Teng M.W.
        • Swann J.
        • Kyparissoudis K.
        • Godfrey D.I.
        • Hayakawa Y.
        CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer.
        J Immunol. 2006; 176: 1582-1587
        16424187
        • Trzonkowski P.
        • Szmit E.
        • Myśliwska J.
        • Dobyszuk A.
        • Myśliwski A.
        CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction.
        Clin Immunol. 2004; 112: 258-267
        15308119
        • Zervos E.E.
        • Osborne D.
        • Boe B.A.
        • Luzardo G.
        • Goldin S.B.
        • Rosemurgy A.S.
        Prognostic significance of new onset ascites in patients with pancreatic cancer.
        World J Surg Oncol. 2006; 4: 16
        16569225