Aav-based gene therapy approaches for the treatment of canavan disease

      The enzyme Aspartoacylase (ASPA) is normally expressed in oligodendrocytes, the myelin-forming cells in the central nervous system (CNS). ASPA gene mutations cause Canavan Disease (CD), a devastating neurological disorder characterized by psychomotor retardation, and spongiform degeneration of central white matter in affected children. The lack of ASPA leads to the enrichment in its substrate N-acetyl aspartate (NAA) which is a biomarker of CD. With no available treatment and a pathology restricted to the CNS CD has been trialled by gene therapy. However, gene replacement approaches using neurotropic recombinant adeno-associated viral (rAAV) vectors have proved unsuccessful. It was shown recently that promoter specificity targets AAV-mediated transgene expression to glia in normal adult rodents but this approach has not been exploited in a disease model.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect