Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy

Published:February 11, 2013DOI:


      Background aims

      The use of adipose mesenchymal stromal cells (ASCs) in cellular and genic therapy has attracted considerable attention as a possible treatment for neurodegenerative disorders, including Parkinson disease. However, the effects of gene therapy combined with intracerebral cell transplantation have not been well defined. Recent studies have demonstrated the respective roles of LIM homeobox transcription factor 1, alpha (LMX1A) and Neurturin (NTN) in the commitment of embryonic stem cells (ESCs) to a midbrain dopaminergic neuronal fate and the commitment of mesenchymal stromal cells to cells supporting the nutrition and protection of neurons.


      We investigated a novel in vitro neuronal differentiation strategy with the use of LMX1A and Neurturin. We were able to elicit a neural phenotype regarding cell morphology, specific gene/protein expression and physiological function. Neuronal-primed ASCs derived from rhesus monkey (rASCs) combined with adenovirus containing NTN and tyrosine hydroxylase (TH) (Ad-NTN-TH) were implanted into the striatum and substantia nigra of methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-lesioned hemi-parkinsonian rhesus monkeys. Monkeys were monitored with the use of behavioral tests and health measures until the fourth month after implantation.


      The differentiated cells transcribed and expressed a variety of dopaminergic neuron-specific genes involved in the SHH/LMX1A pathway. Single-photon emission computed tomography analysis and postmortem analysis revealed that the grafting of rASCs combined with Ad-NTN-TH had neuroprotective effects compared with Ad-NTN-TH or rASCs alone. Behavioral measures demonstrated autograft survival and symptom amelioration.


      These findings may lead to cellular sources for autologous transplantation of Parkinson disease. Combined transplantation of Ad-NTN-TH and induced rASCs expressing LMX1A and NTN may be a better therapy candidate for the treatment of Parkinson disease.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Chen Q.
        • He Y.
        • Yang K.
        Gene therapy for Parkinson's disease: progress and challenges.
        Curr Gene Ther. 2005; 5: 71-80
        • Dass B.
        • Olanow C.W.
        • Kordower J.H.
        Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson's disease.
        Neurology. 2006; 66: 89-103
        • Guilak F.
        • Lott K.E.
        • Awad H.A.
        • Cao Q.
        • Hicok K.C.
        • Fermor B.
        • et al.
        Clonal analysis of the differentiation potential of human adipose-derived adult stem cells.
        J Cell Physiol. 2006; 206: 229-237
        • Anghileri E.
        • Marconi S.
        • Pignatelli A.
        • Cifelli P.
        • Galié M.
        • Sbarbati A.
        • et al.
        Neuronal differentiation potential of human adipose-derived mesenchymal stem cells.
        Stem Cells Dev. 2008; 17: 909-916
        • Scholz T.
        • Sumarto A.
        • Krichevsky A.
        • Evans G.R.
        Neuronal differentiation of human adipose tissue-derived stem cells for peripheral nerve regeneration in vivo.
        Arch Surg. 2011; 146: 666-674
        • Andersson E.
        • Tryggvason U.
        • Deng Q.
        • Friling S.
        • Alekseenko Z.
        • Robert B.
        • et al.
        Identification of intrinsic determinants of midbrain dopamine neurons.
        Cell. 2006; 124: 393-405
        • Cai J.
        • Donaldson A.
        • Yang M.
        • German M.S.
        • Enikolopov G.
        • Iacovitti L.
        The role of Lmx1a in the differentiation of human embryonic stem cells into midbrain dopamine neurons in culture and after transplantation into a Parkinson's disease model.
        Stem Cells. 2009; 27: 220-229
        • Friling S.
        • Andersson E.
        • Thompson L.H.
        • Jönsson M.E.
        • Hebsgaard J.B.
        • Nanou E.
        • et al.
        Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells.
        Proc Natl Acad Sci U S A. 2009; 106: 7613-7618
        • Kotzbauer P.T.
        • Lampe P.A.
        • Heuckeroth R.O.
        • Golden J.P.
        • Creedon D.J.
        • Johnson Jr., E.M.
        • et al.
        Neurturin, a relative of glial-cell-line-derived neurotrophic factor.
        Nature. 1996; 384: 467-470
        • Kordower J.H.
        • Herzog C.D.
        • Dass B.
        • Bakay R.A.
        • Stansell 3rd, J.
        • Gasmi M.
        • et al.
        Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys.
        Ann Neurol. 2006; 60: 706-715
        • Horger B.A.
        • Nishimura M.C.
        • Armanini M.P.
        • Wang L.C.
        • Poulsen K.T.
        • et al.
        Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons.
        J Neurosci. 1998; 18: 4929-4937
        • Nagatsu T.
        Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology.
        Essays Biochem. 1995; 30: 15-35
        • Choi-Lundberg D.L.
        • Lin Q.
        • Chang Y.N.
        • Chiang Y.L.
        • Hay C.M.
        • Mohajeri H.
        • et al.
        Dopaminergic neurons protected from degeneration by GDNF gene therapy.
        Science. 1997; 275: 838-841
        • Moriscot C.
        • de Fraipont F.
        • Richard M.J.
        • Marchand M.
        • Savatier P.
        • Bosco D.
        • et al.
        Human bone marrow mesenchymal stem cells can express insulin and key transcription factors of the endocrine pancreas developmental pathway upon genetic and/or micro-environmental manipulation in vitro.
        Stem Cells. 2005; 23: 594-603
        • Jenner P.
        Functional models of Parkinson's disease: a valuable tool in the development of novel therapies.
        Ann Neurol. 2008; 64: S16-S29
        • Maiorana A.
        • Fierabracci A.
        • Cianfarani S.
        Isolation and characterization of omental adipose progenitor cells in children: a potential tool to unravel the pathogenesis of metabolic syndrome.
        Horm Res. 2009; 72: 348-358
        • Varon S.
        • Manthorpe M.
        • Adler R.
        Cholinergic neuronotrophic factors, I: survival, neurite outgrowth and choline acetyltransferase activity in monolayer cultures from chick embryo ciliary ganglia.
        Brain Res. 1979; 173: 29-45
        • Doo A.R.
        • Kim S.N.
        • Kim S.T.
        • Park J.Y.
        • Chung S.H.
        • Choe B.Y.
        • et al.
        Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.
        Brain Res. 2012; 1429: 106-115
        • Wang W.
        • Sun M.
        • Li H.
        • Wang W.
        • Yan M.
        The delivery of tyrosine hydroxylase accelerates the neurorestoration of Macaca Rhesus model of Parkinson's disease provided by Neurturin.
        Neurosci Lett. 2012; 524: 10-15
        • Chou Y.H.
        • Huang W.S.
        • Su T.P.
        • Lu R.B.
        • Wan F.J.
        • Fu Y.K.
        Dopamine transporters and cognitive function in methamphetamine abuser after a short abstinence: a SPECT study.
        Eur Neuropsychopharmacol. 2007; 17: 46-52
        • Locke M.
        • Windsor J.
        • Dunbar P.R.
        Human adipose-derived stem cells: isolation, characterization and applications in surgery.
        ANZ J Surg. 2009; 79: 235-244
        • Vieira N.M.
        • Brandalise V.
        • Zucconi E.
        • Secco M.
        • Strauss B.E.
        • Zatz M.
        Isolation, characterization, and differentiation potential of canine adipose-derived stem cells.
        Cell Transplant. 2010; 19: 279-289
        • Andersson E.
        • Jensen J.B.
        • Parmar M.
        • Guillemot F.
        • Björklund A.
        Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2.
        Development. 2006; 133: 507-516
        • Abeliovich A.
        • Hammond R.
        Midbrain dopamine neuron differentiation: factors and fates.
        Dev Biol. 2007; 304: 447-454
        • Roybon L.
        • Hjalt T.
        • Christophersen N.S.
        • Li J.Y.
        • Brundin P.
        Effects on differentiation of embryonic ventral midbrain progenitors by Lmx1a, Msx1, Ngn2, and Pitx3.
        J. Neurosci. 2008; 28: 3644-3656
        • Barzilay R.
        • Ben-Zur T.
        • Bulvik S.
        • Melamed E.
        • Offen D.
        Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells.
        Stem Cells Dev. 2009; 18: 591-601
        • Jiang J.
        • Lv Z.
        • Gu Y.
        • Li J.
        • Xu L.
        • Xu W.
        • et al.
        Adult rat mesenchymal stem cells differentiate into neuronal-like phenotype and express a variety of neuro-regulatory molecules in vitro.
        Neurosci Res. 2010; 66: 46-52
        • Levi-Montalcini R.
        • Meyer H.
        • Hamburger V.
        In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo.
        Cancer Res. 1954; 14: 49-57
        • Echelard Y.
        • Epstein D.J.
        • St-Jacques B.
        • Shen L.
        • Mohler J.
        • McMahon J.A.
        • et al.
        Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity.
        Cell. 1993; 75: 1417-1430
        • Burbach J.P.
        • Smidt M.P.
        Molecular programming of stem cells into mesodiencephalic dopaminergic neurons.
        Trends Neurosci. 2006; 29: 601-603
        • Smidt M.P.
        • van Schaick H.S.
        • Lanctôt C.
        • Tremblay J.J.
        • Cox J.J.
        • van der Kleij A.A.
        • et al.
        A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons.
        Proc Natl Acad Sci U S A. 1997; 94: 13305-13310