Advertisement

Ex vivo characterization of γδ T-cell repertoire in patients after adoptive transfer of Vγ9Vδ2 T cells expressing the interleukin-2 receptor β-chain and the common γ-chain

Published:February 07, 2013DOI:https://doi.org/10.1016/j.jcyt.2012.12.004

      Abstract

      Background aims

      Adoptive immunotherapy is emerging as a potent anti-tumor treatment modality; Vγ9Vδ2 T cells may represent appropriate agents for such cancer immunotherapy. To improve the currently limited success of Vγ9Vδ2 T-cell–based immunotherapy, we examined the in vivo dynamics of these adoptively-transferred cells and hypothesized that interleukin (IL)-15 is the potential factor for Vγ9δ2 T cell in vivo survival.

      Methods

      We conducted a clinical trial of adoptive Vγ9Vδ2 T-cell transfer therapy in six colorectal cancer patients who received pulmonary metastasectomy. Patients' peripheral blood mononuclear cells were stimulated with zoledronate (5 μmol/L) and IL-2 (1000 IU/mL) for 14 d. Harvested cells, mostly Vγ9Vδ2 T cells, were given intravenously weekly without additional IL-2 eight times in total. The frequency, phenotype and common γ-chain cytokine receptor expression of Vγ9Vδ2 T cells in peripheral blood was monitored by flow cytometry at each time point during treatment and 4 and 12 weeks after the last administration.

      Results

      Adoptively transferred Vγ9Vδ2 T cells expanded well without exogenous IL-2 administration or lymphodepleting preconditioning. They maintained effector functions in terms of interferon-γ secretion and prompt release of cytotoxic granules in response to PMA/ionomycin or isopentenyl pyrophosphate–positive cells. Because they are IL-2RαIL-7RαIL-15RαIL-2Rβ+γc+, it is likely that IL-2 or IL-15 is required for their maintenance.

      Conclusions

      The persistence of large numbers of functionally active adoptively transferred Vγ9Vδ2 T cells in the absence of exogenous IL-2 implies that an endogenous factor, such as IL-15 transpresentation, is adequate to support these cells in vivo.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bonneville M.
        • Scotet E.
        Human Vγ9Vδ2 T cells: promising new leads for immunotherapy of infections and tumors.
        Curr Opin Immunol. 2006; 18: 539-546
        • Hayday A.C.
        γδ cells: a right time and a right place for a conserved third way of protection.
        Annu Rev Immunol. 2000; 18: 975-1026
        • Carding S.R.
        • Egan P.J.
        γδ T cells: functional plasticity and heterogeneity.
        Nat Rev Immunol. 2002; 2: 336-345
        • Triebel F.
        • Hercend T.
        Subpopulations of human peripheral T γδ lymphocytes.
        Immunol Today. 1989; 10: 186-188
        • Riganti C.
        • Massaia M.
        • Davey M.S.
        • Eberl M.
        Human γδ T-cell responses in infection and immunotherapy: common mechanisms, common mediators?.
        Eur J Immunol. 2012; 42: 1668-1676
        • Wilhelm M.
        • Kunzmann V.
        • Eckstein S.
        • Reimer P.
        • Weissinger F.
        • Ruediger T.
        • et al.
        γδ T cells for immune therapy of patients with lymphoid malignancies.
        Blood. 2003; 102: 200-206
        • Dieli F.
        • Vermijlen D.
        • Fulfaro F.
        • Caccamo N.
        • Meraviglia S.
        • Cicero G.
        • et al.
        Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer.
        Cancer Res. 2007; 67: 7450-7457
        • Bennouna J.
        • Bompas E.
        • Neidhardt E.M.
        • Rolland F.
        • Philip I.
        • Galea C.
        • et al.
        Phase-I study of Innacell γδ, an autologous cell-therapy product highly enriched in gamma9delta2 T lymphocytes, in combination with IL-2, in patients with metastatic renal cell carcinoma.
        Cancer Immunol Immunother. 2008; 57: 1599-1609
        • Kobayashi H.
        • Tanaka Y.
        • Yagi J.
        • Minato N.
        • Tanabe K.
        Phase I/II study of adoptive transfer of γδ T cells in combination with zoledronic acid and IL-2 to patients with advanced renal cell carcinoma.
        Cancer Immunol Immunother. 2011; 60: 1075-1084
        • Kondo M.
        • Sakuta K.
        • Noguchi A.
        • Ariyoshi N.
        • Sato K.
        • Sato S.
        • et al.
        Zoledronate facilitates large-scale ex vivo expansion of functional γδ T cells from cancer patients for use in adoptive immunotherapy.
        Cytotherapy. 2008; 10: 842-856
        • Sato K.
        • Kondo M.
        • Sakuta K.
        • Hosoi A.
        • Noji S.
        • Sugiura M.
        • et al.
        Impact of culture medium on the expansion of T cells for immunotherapy.
        Cytotherapy. 2009; 11: 936-946
        • Nakajima J.
        • Murakawa T.
        • Fukami T.
        • Goto S.
        • Kaneko T.
        • Yoshida Y.
        • et al.
        A phase I study of adoptive immunotherapy for recurrent non-small-cell lung cancer patients with autologous γδ T cells.
        Eur J Cardiothorac Surg. 2010; 37: 1191-1197
        • Sakamoto M.
        • Nakajima J.
        • Murakawa T.
        • Fukami T.
        • Yoshida Y.
        • Murayama T.
        • et al.
        Adoptive immunotherapy for advanced non-small cell lung cancer using zoledronate-expanded γδ T cells: a phase I clinical study.
        J Immunother. 2011; 34: 202-211
        • Kondo M.
        • Izumi T.
        • Fujieda N.
        • Kondo A.
        • Morishita T.
        • Matsushita H.
        • et al.
        Expansion of human peripheral blood γδ T cells using Zoledronate.
        J Vis Exp. 2011; : e3182
        • Gober H.J.
        • Kistowska M.
        • Angman L.
        • Jeno P.
        • Mori L.
        • De Libero G.
        Human T cell receptor γδ cells recognize endogenous mevalonate metabolites in tumor cells.
        J Exp Med. 2003; 197: 163-168
        • Betts M.R.
        • Brenchley J.M.
        • Price D.A.
        • De Rosa S.C.
        • Douek D.C.
        • Roederer M.
        • et al.
        Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation.
        J Immunol Methods. 2003; 281: 65-78
        • Dieli F.
        • Poccia F.
        • Lipp M.
        • Sireci G.
        • Caccamo N.
        • Di Sano C.
        • et al.
        Differentiation of effector/memory Vδ2 T cells and migratory routes in lymph nodes or inflammatory sites.
        J Exp Med. 2003; 198: 391-397
        • Castillo E.F.
        • Schluns K.S.
        Regulating the immune system via IL-15 transpresentation.
        Cytokine. 2012; 59: 479-490
        • Rosenberg S.A.
        • Restifo N.P.
        • Yang J.C.
        • Morgan R.A.
        • Dudley M.E.
        Adoptive cell transfer: a clinical path to effective cancer immunotherapy.
        Nat Rev Cancer. 2008; 8: 299-308
        • Brenner M.K.
        • Heslop H.E.
        Adoptive T cell therapy of cancer.
        Curr Opin Immunol. 2010; 22: 251-257
        • Dudley M.E.
        • Wunderlich J.R.
        • Robbins P.F.
        • Yang J.C.
        • Hwu P.
        • Schwartzentruber D.J.
        • et al.
        Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes.
        Science. 2002; 298: 850-854
        • Wrzesinski C.
        • Restifo N.P.
        Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumor immunotherapy.
        Curr Opin Immunol. 2005; 17: 195-201
        • Gattinoni L.
        • Finkelstein S.E.
        • Klebanoff C.A.
        • Antony P.A.
        • Palmer D.C.
        • Spiess P.J.
        • et al.
        Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells.
        J Exp Med. 2005; 202: 907-912
        • Baccala R.
        • Witherden D.
        • Gonzalez-Quintial R.
        • Dummer W.
        • Surh C.D.
        • Havran W.L.
        • et al.
        Gamma delta T cell homeostasis is controlled by IL-7 and IL-15 together with subset-specific factors.
        J Immunol. 2005; 174: 4606-4612
        • French J.D.
        • Roark C.L.
        • Born W.K.
        • O'Brien R.L.
        γδ T cell homeostasis is established in competition with αβ T cells and NK cells.
        Proc Natl Acad Sci U S A. 2005; 102: 14741-14746
        • Caccamo N.
        • Meraviglia S.
        • Ferlazzo V.
        • Angelini D.
        • Borsellino G.
        • Poccia F.
        • et al.
        Differential requirements for antigen or homeostatic cytokines for proliferation and differentiation of human Vγ9Vδ2 naive, memory and effector T cell subsets.
        Eur J Immunol. 2005; 35: 1764-1772
        • Boyman O.
        • Krieg C.
        • Homann D.
        • Sprent J.
        Homeostatic maintenance of T cells and natural killer cells: cellular and molecular life sciences.
        Cell Mol Life Sci. 2012; 69: 1597-1608
        • Casetti R.
        • Agrati C.
        • Wallace M.
        • Sacchi A.
        • Martini F.
        • Martino A.
        • et al.
        Cutting edge: TGF-beta1 and IL-15 Induce FOXP3+ γδ regulatory T cells in the presence of antigen stimulation.
        J Immunol. 2009; 183: 3574-3577
        • Rosenberg S.A.
        • Yang J.C.
        • Sherry R.M.
        • Kammula U.S.
        • Hughes M.S.
        • Phan G.Q.
        • et al.
        Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy.
        Clin Cancer Res. 2011; 17: 4550-4557