Advertisement

Critical path in cardiac stem cell therapy: an update on cell delivery

Published:January 07, 2013DOI:https://doi.org/10.1016/j.jcyt.2012.11.003

      Abstract

      Despite optimal medical therapy, cardiovascular disease remains a leading cause of morbidity and mortality worldwide. One emerging therapeutic approach for treatment of cardiomyopathies is stem cell therapy. Use of stem cells for regenerative medicine has quickly evolved over the last decade. On the basis of encouraging pre-clinical results, stem cell therapy has developed rapidly into a potentially promising treatment for ischemic heart disease, myocardial infarction and congestive heart failure. In this review, we summarize the current state-of-the-art of stem cell therapy and compare collective experiences gleaned from trials using intravenous, intra-coronary and intra-myocardial delivery in exacting credible benefits. We discuss implications of clinical outcomes reported in relation to the delivered stem cells as probable destiny therapy for cardiovascular repair.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Charwat S.
        • Gyongyosi M.
        • Lang I.
        • Graf S.
        • Beran G.
        • Hemetsberger R.
        • et al.
        Role of adult bone marrow stem cells in the repair of ischemic myocardium: current state of the art.
        Exp Hematol. 2008; 36: 672-680
        • Wei H.
        • Ooi T.H.
        • Tan G.
        • Lim S.Y.
        • Qian L.
        • Wong P.
        • et al.
        Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy: an introduction for clinical researchers.
        Heart Fail Rev. 2010; 15: 1-14
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • Limana F.
        • Jakoniuk I.
        • Quaini F.
        • et al.
        Mobilized bone marrow cells repair the infarcted heart, improving function and survival.
        Proc Natl Acad Sci U S A. 2001; 98: 10344-10349
        • Assmus B.
        • Schachinger V.
        • Teupe C.
        • Britten M.
        • Lehmann R.
        • Dobert N.
        • et al.
        Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI).
        Circulation. 2002; 106: 3009-3017
        • Strauer B.E.
        • Brehm M.
        • Zeus T.
        • Kostering M.
        • Hernandez A.
        • Sorg R.V.
        • et al.
        Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.
        Circulation. 2002; 106: 1913-1918
        • Stamm C.
        • Westphal B.
        • Kleine H.D.
        • Petzsch M.
        • Kittner C.
        • Klinge H.
        • et al.
        Autologous bone-marrow stem-cell transplantation for myocardial regeneration.
        Lancet. 2003; 361: 45-46
        • Wollert K.C.
        • Meyer G.P.
        • Lotz J.
        • Ringes-Lichtenberg S.
        • Lippolt P.
        • Breidenbach C.
        • et al.
        Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.
        Lancet. 2004; 364: 141-148
        • Schachinger V.
        • Erbs S.
        • Elsasser A.
        • Haberbosch W.
        • Hambrecht R.
        • Holschermann H.
        • et al.
        Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial.
        Eur Heart J. 2006; 27: 2775-2783
        • Lunde K.
        • Solheim S.
        • Aakhus S.
        • Arnesen H.
        • Abdelnoor M.
        • Forfang K.
        Autologous stem cell transplantation in acute myocardial infarction: the ASTAMI randomized controlled trial. Intracoronary transplantation of autologous mononuclear bone marrow cells, study design and safety aspects.
        Scand Cardiovasc J. 2005; 39: 150-158
        • Janssens S.
        • Dubois C.
        • Bogaert J.
        • Theunissen K.
        • Deroose C.
        • Desmet W.
        • et al.
        Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.
        Lancet. 2006; 367: 113-121
        • Condorelli G.
        • Borello U.
        • De Angelis L.
        • Latronico M.
        • Sirabella D.
        • Coletta M.
        • et al.
        Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration.
        Proc Natl Acad Sci U S A. 2001; 98: 10733-10738
        • Mangi A.A.
        • Noiseux N.
        • Kong D.
        • He H.
        • Rezvani M.
        • Ingwall J.S.
        • et al.
        Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts.
        Nat Med. 2003; 9: 1195-1201
        • Nygren J.M.
        • Jovinge S.
        • Breitbach M.
        • Sawen P.
        • Roll W.
        • Hescheler J.
        • et al.
        Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.
        Nat Med. 2004; 10: 494-501
        • Leri A.
        • Kajstura J.
        • Anversa P.
        Cardiac stem cells and mechanisms of myocardial regeneration.
        Physiol Rev. 2005; 85: 1373-1416
        • Caplan A.I.
        • Dennis J.E.
        Mesenchymal stem cells as trophic mediators.
        J Cell Biochem. 2006; 98: 1076-1084
        • Gnecchi M.
        • He H.
        • Noiseux N.
        • Liang O.D.
        • Zhang L.
        • Morello F.
        • et al.
        Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement.
        FASEB J. 2006; 20: 661-669
        • Reinecke H.
        • Poppa V.
        • Murry C.E.
        Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting.
        J Mol Cell Cardiol. 2002; 34: 241-249
        • Menasche P.
        • Hagege A.A.
        • Vilquin J.T.
        • Desnos M.
        • Abergel E.
        • Pouzet B.
        • et al.
        Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction.
        J Am Coll Cardiol. 2003; 41: 1078-1083
        • Shintani S.
        • Murohara T.
        • Ikeda H.
        • Ueno T.
        • Honma T.
        • Katoh A.
        • et al.
        Mobilization of endothelial progenitor cells in patients with acute myocardial infarction.
        Circulation. 2001; 103: 2776-2779
        • Leone A.M.
        • Rutella S.
        • Bonanno G.
        • Abbate A.
        • Rebuzzi A.G.
        • Giovannini S.
        • et al.
        Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function.
        Eur Heart J. 2005; 26: 1196-1204
        • Kang H.J.
        • Kim H.S.
        • Zhang S.Y.
        • Park K.W.
        • Cho H.J.
        • Koo B.K.
        • et al.
        Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial.
        Lancet. 2004; 363: 751-756
        • Psaltis P.J.
        • Zannettino A.C.
        • Worthley S.G.
        • Gronthos S.
        Concise review: mesenchymal stromal cells: potential for cardiovascular repair.
        Stem Cells. 2008; 26: 2201-2210
        • Hare J.M.
        • Traverse J.H.
        • Henry T.D.
        • Dib N.
        • Strumpf R.K.
        • Schulman S.P.
        • et al.
        A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction.
        J Am Coll Cardiol. 2009; 54: 2277-2286
        • Kovacic J.C.
        • Muller D.W.
        • Graham R.M.
        Actions and therapeutic potential of G-CSF and GM-CSF in cardiovascular disease.
        J Mol Cell Cardiol. 2007; 42: 19-33
        • Shim W.
        • Mehta A.
        • Lim S.Y.
        • Zhang G.
        • Lim C.H.
        • Chua T.
        • et al.
        G-CSF for stem cell therapy in acute myocardial infarction: friend or foe?.
        Cardiovasc Res. 2011; 89: 20-30
        • Barbash I.M.
        • Chouraqui P.
        • Baron J.
        • Feinberg M.S.
        • Etzion S.
        • Tessone A.
        • et al.
        Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution.
        Circulation. 2003; 108: 863-868
        • Kraitchman D.L.
        • Tatsumi M.
        • Gilson W.D.
        • Ishimori T.
        • Kedziorek D.
        • Walczak P.
        • et al.
        Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction.
        Circulation. 2005; 112: 1451-1461
        • Ma J.
        • Ge J.
        • Zhang S.
        • Sun A.
        • Shen J.
        • Chen L.
        • et al.
        Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction.
        Basic Res Cardiol. 2005; 100: 217-223
        • Freyman T.
        • Polin G.
        • Osman H.
        • Crary J.
        • Lu M.
        • Cheng L.
        • et al.
        A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction.
        Eur Heart J. 2006; 27: 1114-1122
        • Nogueira F.B.
        • Silva S.A.
        • Haddad A.F.
        • Peixoto C.M.
        • Carvalho R.M.
        • Tuche F.A.
        • et al.
        Systolic function of patients with myocardial infarction undergoing autologous bone marrow transplantation.
        Arq Bras Cardiol. 2009; 93 (367–72): 374-379
        • Perin E.C.
        • Lopez J.
        Methods of stem cell delivery in cardiac diseases.
        Nat Clin Pract Cardiovasc Med. 2006; 3: S110-S113
        • Kurpisz M.
        • Czepczynski R.
        • Grygielska B.
        • Majewski M.
        • Fiszer D.
        • Jerzykowska O.
        • et al.
        Bone marrow stem cell imaging after intracoronary administration.
        Int J Cardiol. 2007; 121: 194-195
        • Schots R.
        • De Keulenaer G.
        • Schoors D.
        • Caveliers V.
        • Dujardin M.
        • Verheye S.
        • et al.
        Evidence that intracoronary-injected CD133+ peripheral blood progenitor cells home to the myocardium in chronic postinfarction heart failure.
        Exp Hematol. 2007; 35: 1884-1890
        • Bartunek J.
        • Vanderheyden M.
        • Vandekerckhove B.
        • Mansour S.
        • De Bruyne B.
        • De Bondt P.
        • et al.
        Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety.
        Circulation. 2005; 112: I178-I183
        • Strauer B.E.
        • Brehm M.
        • Zeus T.
        • Bartsch T.
        • Schannwell C.
        • Antke C.
        • et al.
        Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study.
        J Am Coll Cardiol. 2005; 46: 1651-1658
        • Assmus B.
        • Honold J.
        • Schachinger V.
        • Britten M.B.
        • Fischer-Rasokat U.
        • Lehmann R.
        • et al.
        Transcoronary transplantation of progenitor cells after myocardial infarction.
        N Engl J Med. 2006; 355: 1222-1232
        • Boyle A.J.
        • Whitbourn R.
        • Schlicht S.
        • Krum H.
        • Kocher A.
        • Nandurkar H.
        • et al.
        Intra-coronary high-dose CD34+ stem cells in patients with chronic ischemic heart disease: a 12-month follow-up.
        Int J Cardiol. 2006; 109: 21-27
        • Seth S.
        • Narang R.
        • Bhargava B.
        • Ray R.
        • Mohanty S.
        • Gulati G.
        • et al.
        Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial.
        J Am Coll Cardiol. 2006; 48: 2350-2351
        • Meluzin J.
        • Mayer J.
        • Groch L.
        • Janousek S.
        • Hornacek I.
        • Hlinomaz O.
        • et al.
        Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function.
        Am Heart J. 2006; 152: 975.e9-975.e15
        • Karatasakis G.
        • Leontiadis E.
        • Peristeri I.
        • Manginas A.
        • Goussetis E.
        • Graphakos S.
        • et al.
        Intracoronary infusion of selected autologous bone marrow stem cells improves longitudinal myocardial strain and strain rate in patients with old anterior myocardial infarction without recent revascularization.
        Eur J Echocardiogr. 2010; 11: 440-445
        • Assmus B.
        • Rolf A.
        • Erbs S.
        • Elsasser A.
        • Haberbosch W.
        • Hambrecht R.
        • et al.
        Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction.
        Circ Heart Fail. 2010; 3: 89-96
        • Miettinen J.A.
        • Ylitalo K.
        • Hedberg P.
        • Jokelainen J.
        • Kervinen K.
        • Niemela M.
        • et al.
        Determinants of functional recovery after myocardial infarction of patients treated with bone marrow-derived stem cells after thrombolytic therapy.
        Heart. 2010; 96: 362-367
        • Seeger F.H.
        • Tonn T.
        • Krzossok N.
        • Zeiher A.M.
        • Dimmeler S.
        Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction.
        Eur Heart J. 2007; 28: 766-772
        • Dimmeler S.
        • Burchfield J.
        • Zeiher A.M.
        Cell-based therapy of myocardial infarction.
        Arterioscler Thromb Vasc Biol. 2008; 28: 208-216
        • Flores-Ramirez R.
        • Uribe-Longoria A.
        • Rangel-Fuentes M.M.
        • Gutierrez-Fajardo P.
        • Salazar-Riojas R.
        • Cervantes-Garcia D.
        • et al.
        Intracoronary infusion of CD133+ endothelial progenitor cells improves heart function and quality of life in patients with chronic post-infarct heart insufficiency.
        Cardiovasc Revasc Med. 2010; 11: 72-78
        • Strauer B.E.
        Clinical perspectives of heart muscle regeneration by stem cells: a future-oriented epilogue [Klinische Perspektiven der Herzmuskelregeneration durch Stammzellen: Ein zukunftsorientierter Epilog].
        Herz. 2010; 35 ([in German]): 474-476
        • Traverse J.H.
        • Henry T.D.
        • Ellis S.G.
        • Pepine C.J.
        • Willerson J.T.
        • Zhao D.X.
        • et al.
        Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial.
        JAMA. 2011; 306: 2110-2119
        • Kawamoto A.
        • Tkebuchava T.
        • Yamaguchi J.
        • Nishimura H.
        • Yoon Y.S.
        • Milliken C.
        • et al.
        Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia.
        Circulation. 2003; 107: 461-468
        • Perin E.C.
        • Dohmann H.F.
        • Borojevic R.
        • Silva S.A.
        • Sousa A.L.
        • Mesquita C.T.
        • et al.
        Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure.
        Circulation. 2003; 107: 2294-2302
        • Amado L.C.
        • Saliaris A.P.
        • Schuleri K.H.
        • St John M.
        • Xie J.S.
        • Cattaneo S.
        • et al.
        Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction.
        Proc Natl Acad Sci U S A. 2005; 102: 11474-11479
        • Hou D.
        • Youssef E.A.
        • Brinton T.J.
        • Zhang P.
        • Rogers P.
        • Price E.T.
        • et al.
        Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials.
        Circulation. 2005; 112: I150-I156
        • Gyongyosi M.
        • Blanco J.
        • Marian T.
        • Tron L.
        • Petnehazy O.
        • Petrasi Z.
        • et al.
        Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression.
        Circ Cardiovasc Imaging. 2008; 1: 94-103
        • Losordo D.W.
        • Vale P.R.
        • Symes J.F.
        • Dunnington C.H.
        • Esakof D.D.
        • Maysky M.
        • et al.
        Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia.
        Circulation. 1998; 98: 2800-2804
        • Laham R.J.
        • Post M.
        • Rezaee M.
        • Donnell-Fink L.
        • Wykrzykowska J.J.
        • Lee S.U.
        • et al.
        Transendocardial and transepicardial intramyocardial fibroblast growth factor-2 administration: myocardial and tissue distribution.
        Drug Metab Dispos. 2005; 33: 1101-1107
        • Waksman R.
        • Fournadjiev J.
        • Baffour R.
        • Pakala R.
        • Hellinga D.
        • Leborgne L.
        • et al.
        Transepicardial autologous bone marrow-derived mononuclear cell therapy in a porcine model of chronically infarcted myocardium.
        Cardiovasc Radiat Med. 2004; 5: 125-131
        • Leotta E.
        • Patejunas G.
        • Murphy G.
        • Szokol J.
        • McGregor L.
        • Carbray J.
        • et al.
        Gene therapy with adenovirus-mediated myocardial transfer of vascular endothelial growth factor 121 improves cardiac performance in a pacing model of congestive heart failure.
        J Thorac Cardiovasc Surg. 2002; 123: 1101-1113
        • Kornowski R.
        • Fuchs S.
        • Leon M.B.
        • Epstein S.E.
        Delivery strategies to achieve therapeutic myocardial angiogenesis.
        Circulation. 2000; 101: 454-458
        • Dib N.
        • Khawaja H.
        • Varner S.
        • McCarthy M.
        • Campbell A.
        Cell therapy for cardiovascular disease: a comparison of methods of delivery.
        J Cardiovasc Transl Res. 2011; 4: 177-181
        • Menasche P.
        • Alfieri O.
        • Janssens S.
        • McKenna W.
        • Reichenspurner H.
        • Trinquart L.
        • et al.
        The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation.
        Circulation. 2008; 117: 1189-1200
        • Dib N.
        • Michler R.E.
        • Pagani F.D.
        • Wright S.
        • Kereiakes D.J.
        • Lengerich R.
        • et al.
        Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up.
        Circulation. 2005; 112: 1748-1755
        • Pompilio G.
        • Steinhoff G.
        • Liebold A.
        • Pesce M.
        • Alamanni F.
        • Capogrossi M.C.
        • et al.
        Direct minimally invasive intramyocardial injection of bone marrow-derived AC133+ stem cells in patients with refractory ischemia: preliminary results.
        Thorac Cardiovasc Surg. 2008; 56: 71-76
        • Dib N.
        • Menasche P.
        • Bartunek J.J.
        • Zeiher A.M.
        • Terzic A.
        • Chronos N.A.
        • et al.
        Recommendations for successful training on methods of delivery of biologics for cardiac regeneration: a report of the International Society for Cardiovascular Translational Research.
        JACC Cardiovasc Interv. 2010; 3: 265-275
        • Perin E.C.
        • Silva G.V.
        • Sarmento-Leite R.
        • Vaughn W.K.
        • Fish R.D.
        • Ferguson 3rd, J.J.
        Left ventricular electromechanical mapping: preliminary evidence of electromechanical changes after successful coronary intervention.
        Am Heart J. 2002; 144: 693-701
        • Grossman P.M.
        • Han Z.
        • Palasis M.
        • Barry J.J.
        • Lederman R.J.
        Incomplete retention after direct myocardial injection.
        Catheter Cardiovasc Interv. 2002; 55: 392-397
        • Ince H.
        • Petzsch M.
        • Rehders T.C.
        • Chatterjee T.
        • Nienaber C.A.
        Transcatheter transplantation of autologous skeletal myoblasts in postinfarction patients with severe left ventricular dysfunction.
        J Endovasc Ther. 2004; 11: 695-704
        • Dib N.
        • Dinsmore J.
        • Lababidi Z.
        • White B.
        • Moravec S.
        • Campbell A.
        • et al.
        One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study).
        JACC Cardiovasc Interv. 2009; 2: 9-16
        • Krause K.
        • Jaquet K.
        • Schneider C.
        • Haupt S.
        • Lioznov M.V.
        • Otte K.M.
        • et al.
        Percutaneous intramyocardial stem cell injection in patients with acute myocardial infarction: first-in-man study.
        Heart. 2009; 95: 1145-1152
        • Losordo D.W.
        • Schatz R.A.
        • White C.J.
        • Udelson J.E.
        • Veereshwarayya V.
        • Durgin M.
        • et al.
        Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial.
        Circulation. 2007; 115: 3165-3172
        • Klein H.M.
        • Ghodsizad A.
        • Marktanner R.
        • Poll L.
        • Voelkel T.
        • Mohammad Hasani M.R.
        • et al.
        Intramyocardial implantation of CD133+ stem cells improved cardiac function without bypass surgery.
        Heart Surg Forum. 2007; 10: E66-E69
        • Arom K.V.
        • Ruengsakulrach P.
        • Jotisakulratana V.
        Intramyocardial angiogenic cell precursor injection for cardiomyopathy.
        Asian Cardiovasc Thorac Ann. 2008; 16: 143-148
        • Losordo D.W.
        • Henry T.D.
        • Davidson C.
        • Sup Lee J.
        • Costa M.A.
        • Bass T.
        • et al.
        Intramyocardial, autologous CD34+ cell therapy for refractory angina.
        Circ Res. 2011; 109: 428-436
        • Williams A.R.
        • Trachtenberg B.
        • Velazquez D.L.
        • McNiece I.
        • Altman P.
        • Rouy D.
        • et al.
        Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling.
        Circ Res. 2011; 108: 792-796
        • Perin E.C.
        • Willerson J.T.
        • Pepine C.J.
        • Henry T.D.
        • Ellis S.G.
        • Zhao D.X.
        • et al.
        Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN trial.
        JAMA. 2012; 307: 1717-1726
        • Charwat S.
        • Lang I.
        • Dettke M.
        • Graf S.
        • Nyolczas N.
        • Hemetsberger R.
        • et al.
        Effect of intramyocardial delivery of autologous bone marrow mononuclear stem cells on the regional myocardial perfusion. NOGA-guided subanalysis of the MYSTAR prospective randomised study.
        Thromb Haemost. 2010; 103: 564-571
        • Astori G.
        • Soncin S.
        • Lo Cicero V.
        • Siclari F.
        • Surder D.
        • Turchetto L.
        • et al.
        Bone marrow derived stem cells in regenerative medicine as advanced therapy medicinal products.
        Am J Transl Res. 2010; 2: 285-295
        • Rota M.
        • Kajstura J.
        • Hosoda T.
        • Bearzi C.
        • Vitale S.
        • Esposito G.
        • et al.
        Bone marrow cells adopt the cardiomyogenic fate in vivo.
        Proc Natl Acad Sci U S A. 2007; 104: 17783-17788
        • Wollert K.C.
        • Drexler H.
        Cell therapy for the treatment of coronary heart disease: a critical appraisal.
        Nat Rev Cardiol. 2010; 7: 204-215
        • Yoon Y.S.
        • Lee N.
        • Scadova H.
        Myocardial regeneration with bone-marrow-derived stem cells.
        Biol Cell. 2005; 97: 253-263
        • Cannon 3rd, R.O.
        • Dunbar C.E.
        BM-derived cell therapies for cardiovascular disease.
        Cytotherapy. 2007; 9: 305-315
        • Brunskill S.J.
        • Hyde C.J.
        • Doree C.J.
        • Watt S.M.
        • Martin-Rendon E.
        Route of delivery and baseline left ventricular ejection fraction, key factors of bone-marrow-derived cell therapy for ischaemic heart disease.
        Eur J Heart Fail. 2009; 11: 887-896
        • Wen Y.
        • Meng L.
        • Xie J.
        • Ouyang J.
        Direct autologous bone marrow-derived stem cell transplantation for ischemic heart disease: a meta-analysis.
        Expert Opin Biol Ther. 2011; 11: 559-567
        • Donndorf P.
        • Kundt G.
        • Kaminski A.
        • Yerebakan C.
        • Liebold A.
        • Steinhoff G.
        • et al.
        Intramyocardial bone marrow stem cell transplantation during coronary artery bypass surgery: a meta-analysis.
        J Thorac Cardiovasc Surg. 2011; 142: 911-920
        • Jiang M.
        • He B.
        • Zhang Q.
        • Ge H.
        • Zang M.H.
        • Han Z.H.
        • et al.
        Randomized controlled trials on the therapeutic effects of adult progenitor cells for myocardial infarction: meta-analysis.
        Expert Opin Biol Ther. 2010; 10: 667-680
        • Kang S.
        • Yang Y.J.
        • Li C.J.
        • Gao R.L.
        Effects of intracoronary autologous bone marrow cells on left ventricular function in acute myocardial infarction: a systematic review and meta-analysis for randomized controlled trials.
        Coron Artery Dis. 2008; 19: 327-335
        • Zhang S.N.
        • Sun A.J.
        • Ge J.B.
        • Yao K.
        • Huang Z.Y.
        • Wang K.Q.
        • et al.
        Intracoronary autologous bone marrow stem cells transfer for patients with acute myocardial infarction: a meta-analysis of randomised controlled trials.
        Int J Cardiol. 2009; 136: 178-185
        • Sun L.
        • Zhang T.
        • Lan X.
        • Du G.
        Effects of stem cell therapy on left ventricular remodeling after acute myocardial infarction: a meta-analysis.
        Clin Cardiol. 2010; 33: 296-302
        • Martin-Rendon E.
        • Brunskill S.J.
        • Hyde C.J.
        • Stanworth S.J.
        • Mathur A.
        • Watt S.M.
        Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review.
        Eur Heart J. 2008; 29: 1807-1818
        • Sanz-Ruiz R.
        • Gutierrez Ibanes E.
        • Arranz A.V.
        • Fernandez Santos M.E.
        • Fernandez P.L.
        • Fernandez-Aviles F.
        Phases I-III clinical trials using adult stem cells.
        Stem Cells Int. 2010; 2010: 579142
        • Simpson D.
        • Liu H.
        • Fan T.H.
        • Nerem R.
        • Dudley Jr., S.C.
        A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling.
        Stem Cells. 2007; 25: 2350-2357
        • Smits P.C.
        • van Geuns R.J.
        • Poldermans D.
        • Bountioukos M.
        • Onderwater E.E.
        • Lee C.H.
        • et al.
        Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up.
        J Am Coll Cardiol. 2003; 42: 2063-2069
        • Siminiak T.
        • Kalawski R.
        • Fiszer D.
        • Jerzykowska O.
        • Rzezniczak J.
        • Rozwadowska N.
        • et al.
        Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up.
        Am Heart J. 2004; 148: 531-537
        • Menasche P.
        Stem cell therapy for heart failure: are arrhythmias a real safety concern?.
        Circulation. 2009; 119: 2735-2740
        • Fouts K.
        • Fernandes B.
        • Mal N.
        • Liu J.
        • Laurita K.R.
        Electrophysiological consequence of skeletal myoblast transplantation in normal and infarcted canine myocardium.
        Heart Rhythm. 2006; 3: 452-461
        • Fukushima S.
        • Varela-Carver A.
        • Coppen S.R.
        • Yamahara K.
        • Felkin L.E.
        • Lee J.
        • et al.
        Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model.
        Circulation. 2007; 115: 2254-2261
        • Taljaard M.
        • Ward M.R.
        • Kutryk M.J.
        • Courtman D.W.
        • Camack N.J.
        • Goodman S.G.
        • et al.
        Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction.
        Am Heart J. 2010; 159: 354-360
        • Pasquet S.
        • Sovalat H.
        • Henon P.
        • Bischoff N.
        • Arkam Y.
        • Ojeda-Uribe M.
        • et al.
        Long-term benefit of intracardiac delivery of autologous granulocyte-colony-stimulating factor-mobilized blood CD34+ cells containing cardiac progenitors on regional heart structure and function after myocardial infarct.
        Cytotherapy. 2009; 11: 1002-1015
        • Stamm C.
        • Kleine H.D.
        • Choi Y.H.
        • Dunkelmann S.
        • Lauffs J.A.
        • Lorenzen B.
        • et al.
        Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies.
        J Thorac Cardiovasc Surg. 2007; 133: 717-725
        • Laflamme M.A.
        • Chen K.Y.
        • Naumova A.V.
        • Muskheli V.
        • Fugate J.A.
        • Dupras S.K.
        • et al.
        Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts.
        Nat Biotechnol. 2007; 25: 1015-1024
        • Okada M.
        • Payne T.R.
        • Zheng B.
        • Oshima H.
        • Momoi N.
        • Tobita K.
        • et al.
        Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium.
        J Am Coll Cardiol. 2008; 52: 1869-1880
        • Johnston P.V.
        • Sasano T.
        • Mills K.
        • Evers R.
        • Lee S.T.
        • Smith R.R.
        • et al.
        Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy.
        Circulation. 2009; 120: 1075-1083
        • Makkar R.R.
        • Smith R.R.
        • Cheng K.
        • Malliaras K.
        • Thomson L.E.
        • Berman D.
        • et al.
        Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial.
        Lancet. 2012; 379: 895-904
        • Bourahla B.
        • Shafy A.
        • Meilhac O.
        • Elmadbouh I.
        • Michel J.B.
        • Chachques J.C.
        Mesothelial cells vs. skeletal myoblasts for myocardial infarction.
        Asian Cardiovasc Thorac Ann. 2010; 18: 153-160
        • Bai X.
        • Yan Y.
        • Song Y.H.
        • Seidensticker M.
        • Rabinovich B.
        • Metzele R.
        • et al.
        Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction.
        Eur Heart J. 2010; 31: 489-501
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • Baker M.
        • Limana F.
        • Chimenti S.
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • Linke A.
        • Muller P.
        • Nurzynska D.
        • Casarsa C.
        • Torella D.
        • Nascimbene A.
        • et al.
        Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function.
        Proc Natl Acad Sci U S A. 2005; 102: 8966-8971
        • Bearzi C.
        • Rota M.
        • Hosoda T.
        • Tillmanns J.
        • Nascimbene A.
        • De Angelis A.
        • et al.
        Human cardiac stem cells.
        Proc Natl Acad Sci U S A. 2007; 104: 14068-14073
        • Roncalli J.
        • Mouquet F.
        • Piot C.
        • Trochu J.N.
        • Le Corvoisier P.
        • Neuder Y.
        • et al.
        Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial.
        Eur Heart J. 2011; 32: 1748-1757
        • Chen S.L.
        • Fang W.W.
        • Qian J.
        • Ye F.
        • Liu Y.H.
        • Shan S.J.
        • et al.
        Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute myocardial infarction.
        Chin Med J (Engl). 2004; 117: 1443-1448
        • Hirsch A.
        • Nijveldt R.
        • van der Vleuten P.A.
        • Tijssen J.G.
        • van der Giessen W.J.
        • Tio R.A.
        • et al.
        Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial.
        Eur Heart J. 2011; 32: 1736-1747
        • Ge J.
        • Li Y.
        • Qian J.
        • Shi J.
        • Wang Q.
        • Niu Y.
        • et al.
        Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI).
        Heart. 2006; 92: 1764-1767
        • Ruan W.
        • Pan C.Z.
        • Huang G.Q.
        • Li Y.L.
        • Ge J.B.
        • Shu X.H.
        Assessment of left ventricular segmental function after autologous bone marrow stem cells transplantation in patients with acute myocardial infarction by tissue tracking and strain imaging.
        Chin Med J (Engl). 2005; 118: 1175-1181
        • Tendera M.
        • Wojakowski W.
        • Ruzyllo W.
        • Chojnowska L.
        • Kepka C.
        • Tracz W.
        • et al.
        Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial.
        Eur Heart J. 2009; 30: 1313-1321
        • Straburzynska-Migaj E.
        • Popiel M.
        • Grajek S.
        • Katarzynska-Szymanska A.
        • Lesiak M.
        • Breborowicz P.
        • et al.
        Exercise capacity, arrhythmic risk profile, and pulmonary function is not influenced by intracoronary injection of bone marrow stem cells in patients with acute myocardial infarction.
        Int J Cardiol. 2012; 159: 134-138
        • Penicka M.
        • Horak J.
        • Kobylka P.
        • Pytlik R.
        • Kozak T.
        • Belohlavek O.
        • et al.
        Intracoronary injection of autologous bone marrow-derived mononuclear cells in patients with large anterior acute myocardial infarction: a prematurely terminated randomized study.
        J Am Coll Cardiol. 2007; 49: 2373-2374
        • Plewka M.
        • Krzeminska-Pakula M.
        • Peruga J.Z.
        • Lipiec P.
        • Kurpesa M.
        • Wierzbowska-Drabik K.
        • et al.
        The effects of intracoronary delivery of mononuclear bone marrow cells in patients with myocardial infarction: a two year follow-up results.
        Kardiol Pol. 2011; 69: 1234-1240
        • Traverse J.H.
        • McKenna D.H.
        • Harvey K.
        • Jorgenso B.C.
        • Olson R.E.
        • Bostrom N.
        • et al.
        Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction.
        Am Heart J. 2010; 160: 428-434
        • Kang H.J.
        • Kim H.S.
        • Koo B.K.
        • Kim Y.J.
        • Lee D.
        • Sohn D.W.
        • et al.
        Intracoronary infusion of the mobilized peripheral blood stem cell by G-CSF is better than mobilization alone by G-CSF for improvement of cardiac function and remodeling: 2-year follow-up results of the Myocardial Regeneration and Angiogenesis in Myocardial Infarction with G-CSF and Intra-Coronary Stem Cell Infusion (MAGIC Cell) 1 trial.
        Am Heart J. 2007; 153: 237.e1-237.e8
        • Beitnes J.O.
        • Hopp E.
        • Lunde K.
        • Solheim S.
        • Arnesen H.
        • Brinchmann J.E.
        • et al.
        Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study.
        Heart. 2009; 95: 1983-1989
        • Kuethe F.
        • Richartz B.M.
        • Sayer H.G.
        • Kasper C.
        • Werner G.S.
        • Hoffken K.
        • et al.
        Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions.
        Int J Cardiol. 2004; 97: 123-127
        • Bolli R.
        • Chugh A.R.
        • D'Amario D.
        • Loughran J.H.
        • Stoddard M.F.
        • Ikram S.
        • et al.
        Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial.
        Lancet. 2011; 378: 1847-1857
        • Kovacic J.C.
        • Macdonald P.
        • Feneley M.P.
        • Muller D.W.
        • Freund J.
        • Dodds A.
        • et al.
        Safety and efficacy of consecutive cycles of granulocyte-colony stimulating factor, and an intracoronary CD133+ cell infusion in patients with chronic refractory ischemic heart disease: the G-CSF in angina patients with IHD to stimulate neovascularization (GAIN I) trial.
        Am Heart J. 2008; 156: 954-963
        • Diederichsen A.C.
        • Moller J.E.
        • Thayssen P.
        • Junker A.B.
        • Videbaek L.
        • Saekmose S.G.
        • et al.
        Effect of repeated intracoronary injection of bone marrow cells in patients with ischaemic heart failure: the Danish stem cell study—congestive heart failure trial (DanCell-CHF).
        Eur J Heart Fail. 2008; 10: 661-667
        • Strauer B.E.
        • Yousef M.
        • Schannwell C.M.
        The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study.
        Eur J Heart Fail. 2010; 12: 721-729
        • Bocchi E.A.
        • Bacal F.
        • Guimaraes G.
        • Mendroni A.
        • Mocelin A.
        • Filho A.E.
        • et al.
        Granulocyte-colony stimulating factor or granulocyte-colony stimulating factor associated to stem cell intracoronary infusion effects in non ischemic refractory heart failure.
        Int J Cardiol. 2010; 138: 94-97
        • Yelda T.
        • Berrin U.
        • Murat S.
        • Aytac O.
        • Sevgi B.
        • Yasemin S.
        • et al.
        Intracoronary stem cell infusion in heart transplant candidates.
        Tohoku J Exp Med. 2007; 213: 113-120
        • Katritsis D.G.
        • Sotiropoulou P.
        • Giazitzoglou E.
        • Karvouni E.
        • Papamichail M.
        Electrophysiological effects of intracoronary transplantation of autologous mesenchymal and endothelial progenitor cells.
        Europace. 2007; 9: 167-171
        • Manginas A.
        • Goussetis E.
        • Koutelou M.
        • Karatasakis G.
        • Peristeri I.
        • Theodorakos A.
        • et al.
        Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction.
        Catheter Cardiovasc Interv. 2007; 69: 773-781
        • Seth S.
        • Bhargava B.
        • Narang R.
        • Ray R.
        • Mohanty S.
        • Gulati G.
        • et al.
        The ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial: a long-term follow-up study.
        J Am Coll Cardiol. 2010; 55: 1643-1644
        • Mansour S.
        • Roy D.C.
        • Bouchard V.
        • Nguyen B.K.
        • Stevens L.M.
        • Gobeil F.
        • et al.
        COMPARE-AMI trial: comparison of intracoronary injection of CD133+ bone marrow stem cells to placebo in patients after acute myocardial infarction and left ventricular dysfunction: study rationale and design.
        J Cardiovasc Transl Res. 2010; 3: 153-159
        • Ahmadi H.
        • Farahani M.M.
        • Kouhkan A.
        • Moazzami K.
        • Fazeli R.
        • Sadeghian H.
        • et al.
        Five-year follow-up of the local autologous transplantation of CD133+ enriched bone marrow cells in patients with myocardial infarction.
        Arch Iran Med. 2012; 15: 32-35
        • Gyongyosi M.
        • Lang I.
        • Dettke M.
        • Beran G.
        • Graf S.
        • Sochor H.
        • et al.
        Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study.
        Nat Clin Pract Cardiovasc Med. 2009; 6: 70-81
        • Fuchs S.
        • Satler L.F.
        • Kornowski R.
        • Okubagzi P.
        • Weisz G.
        • Baffour R.
        • et al.
        Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study.
        J Am Coll Cardiol. 2003; 41: 1721-1724
        • Pokushalov E.
        • Romanov A.
        • Chernyavsky A.
        • Larionov P.
        • Terekhov I.
        • Artyomenko S.
        • et al.
        Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study.
        J Cardiovasc Transl Res. 2010; 3: 160-168
        • Silva G.V.
        • Perin E.C.
        • Dohmann H.F.
        • Borojevic R.
        • Silva S.A.
        • Sousa A.L.
        • et al.
        Catheter-based transendocardial delivery of autologous bone-marrow-derived mononuclear cells in patients listed for heart transplantation.
        Tex Heart Inst J. 2004; 31: 214-219
        • Hamano K.
        • Nishida M.
        • Hirata K.
        • Mikamo A.
        • Li T.S.
        • Harada M.
        • et al.
        Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results.
        Jpn Circ J. 2001; 65: 845-847
        • Tse H.F.
        • Kwong Y.L.
        • Chan J.K.
        • Lo G.
        • Ho C.L.
        • Lau C.P.
        Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation.
        Lancet. 2003; 361: 47-49
        • Rivas-Plata A.
        • Castillo J.
        • Pariona M.
        • Chunga A.
        Bypass grafts and cell transplant in heart failure with low ejection fraction.
        Asian Cardiovasc Thorac Ann. 2010; 18: 425-429
        • Perin E.C.
        • Silva G.V.
        • Henry T.D.
        • Cabreira-Hansen M.G.
        • Moore W.H.
        • Coulter S.A.
        • et al.
        A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF).
        Am Heart J. 2011; 161: 1078-1087.e3
        • Patel A.N.
        • Geffner L.
        • Vina R.F.
        • Saslavsky J.
        • Urschel Jr., H.C.
        • Kormos R.
        • et al.
        Surgical treatment for congestive heart failure with autologous adult stem cell transplantation: a prospective randomized study.
        J Thorac Cardiovasc Surg. 2005; 130: 1631-1638
        • Yoo K.J.
        • Kim H.O.
        • Kwak Y.L.
        • Kang S.M.
        • Jang Y.S.
        • Lim S.H.
        • et al.
        Autologous bone marrow cell transplantation combined with off-pump coronary artery bypass grafting in patients with ischemic cardiomyopathy.
        Can J Surg. 2008; 51: 269-275
        • Galinanes M.
        • Loubani M.
        • Davies J.
        • Chin D.
        • Pasi J.
        • Bell P.R.
        Autotransplantation of unmanipulated bone marrow into scarred myocardium is safe and enhances cardiac function in humans.
        Cell Transplant. 2004; 13: 7-13
        • Reyes G.
        • Allen K.B.
        • Alvarez P.
        • Alegre A.
        • Aguado B.
        • Olivera M.
        • et al.
        Mid term results after bone marrow laser revascularization for treating refractory angina.
        BMC Cardiovasc Disord. 2010; 10: 42
        • Beeres S.L.
        • Bax J.J.
        • Dibbets P.
        • Stokkel M.P.
        • Zeppenfeld K.
        • Fibbe W.E.
        • et al.
        Effect of intramyocardial injection of autologous bone marrow-derived mononuclear cells on perfusion, function, and viability in patients with drug-refractory chronic ischemia.
        J Nucl Med. 2006; 47: 574-580
        • Arguero R.
        • Careaga-Reyna G.
        • Castano-Guerra R.
        • Garrido-Garduno M.H.
        • Magana-Serrano J.A.
        • de Jesus Nambo-Lucio M.
        Cellular autotransplantation for ischemic and idiopathic dilated cardiomyopathy: preliminary report.
        Arch Med Res. 2006; 37: 1010-1014
        • Archundia A.
        • Aceves J.L.
        • Lopez-Hernandez M.
        • Alvarado M.
        • Rodriguez E.
        • Diaz Quiroz G.
        • et al.
        Direct cardiac injection of G-CSF mobilized bone-marrow stem-cells improves ventricular function in old myocardial infarction.
        Life Sci. 2005; 78: 279-283