Research Article| Volume 12, ISSUE 3, P288-302, 2010

Isolation and characterization of stem cells from pancreatic islet: pluripotency, differentiation potential and ultrastructural characteristics


      Background aims

      Stem cells (SC) in different locations have individual characteristics. Important questions to be answered include how these specialties are generated, what the mechanism underlying their generation is, and what their biologic and clinical merits are. A basic approach to answering these questions is to make comparisons between the differences and similarities among the various SC types. They may focus on aspects of biologic marker discovery, capacity of proliferation and differentiation, along with other characteristics. The aim of this study was to characterize in detail the SC isolated from pancreatic islet (PI) and compare their properties with bone marrow (BM)-derived mesenchymal stromal cells (MSC) of the rat.


      Immunophenotypic characteristics, proliferation capacities, telomerase activities, pluripotent-related gene expressions, ultrastructure and the potential for multilineage differentiation of PI SC and BM MSC were studied.


      We found that PI SC expressed markers of embryonic SC (Oct-4, Sox-2 and Rex-1) and had a high proliferation capacity, proven also by high telomerase activities. Surprisingly, markers belonging to differentiated cells were expressed by these cells in a constitutive manner. PI SC ultrastructure showed more developed and metabolically active cells.


      The immunocytochemical identification of both PI SC and BM MSC was demonstrated to be typical MSC. Without stimulation of differentiation markers of adipogenic, chondrogenic, neurogenic, myogenic and osteogenic cells in these SC, the expression of those markers might explain their multilineage differentiation potential. We suggest that, by reason of the respectively high telomerase activity in PI SC, they could be better candidates than BM MSC for cell replacement therapy of type 1 diabetes.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Zulewski H.
        • Abraham E.J.
        • Gerlach M.J.
        • Daniel P.B.
        • Moritz W.
        • Müller B.
        • et al.
        Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes.
        Diabetes. 2001; 50: 521-533
        • Gershengorn M.C.
        • Geras-Raaka E.
        • Hardikar A.A.
        • Raaka B.M.
        Are better islet cell precursors generated by epithelial-to-mesenchymal transition?.
        Cell Cycle. 2005; 4: 380-382
        • Zhang L.
        • Hong T.P.
        • Hu J.
        • Liu Y.N.
        • Wu Y.H.
        • Li L.S.
        Nestin-positive progenitor cells isolated from human fetal pancreas have phenotypic markers identical to mesenchymal stem cells.
        World J Gastroenterol. 2005; 11: 2906-2911
        • Eberhardt M.
        • Salmon P.
        • von Mach M.A.
        • Hengstler J.G.
        • Brulport M.
        • Linsheid P.
        • et al.
        Multipotential nestin and Isl-1 positive mesenchymal stem cells isolated from human pancreatic islets.
        Biochem Biophys Res Commun. 2006; 345: 1167-1176
        • Atouf F.
        • Park C.H.
        • Pechhold K.
        • Ta M.
        • Choi Y.
        • Lumelsky N.L.
        No evidence for mouse pancreatic beta-cell epithelial– mesenchymal transition in vitro.
        Diabetes. 2007; 56: 699-702
        • Chase L.G.
        • Ulloa-Montoya F.
        • Kidder B.L.
        • Verfaillie C.M.
        Islet-derived fibroblast-like cells are not derived via epithelial–mesenchymal transition from Pdx-1 or insulin-positive cells.
        Diabetes. 2007; 56: 3-7
        • Davani B.
        • Ikonomou L.
        • Raaka B.M.
        • Geras-Raaka E.
        • Morton R.A.
        • Marcus-Samuels B.
        • et al.
        Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo.
        Stem Cells. 2007; 25: 3215-3222
        • Gallo R.
        • Gambelli F.
        • Gava B.
        • Sasdelli Tellone
        • Masini M.
        • et al.
        Generation and expansion of multipotent mesenchymal progenitor cells from cultured human pancreatic islets.
        Cell Death Differ. 2007; 14: 1860-1871
        • Suzuki A.
        • Nakauchi H.
        • Taniguchi H.
        Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting.
        Diabetes. 2004; 53: 2143-2152
        • Omer A.
        • Duvivier-Kali V.F.
        • Aschenbach W.
        • Tchipashvili V.
        • Goodyear L.J.
        • Weir G.C.
        Exercise induces hypoglycemia in rats with islet transplantation.
        Diabetes. 2004; 53: 360-365
        • Dellê H.
        • Saito M.H.
        • Yoshimoto P.M.
        • Noronha I.L.
        The use of iodixanol for the purification of rat pancreatic islets.
        Transplant Proc. 2007; 39: 467-469
        • Karaoz E.
        • Aksoy A.
        • Ayhan S.
        • Sariboyaci A.E.
        • Kaymaz F.
        • Kasap M.
        Characterization of mesenchymal stem cells from rat bone marrow: ultrastructural properties, differentiation potential and immunophenotypic markers.
        Histochem Cell Biol. 2009; 132: 533-546
        • Sordi V.
        • Malosio M.L.
        • Marchesi F.
        • Mercalli A.
        • Melzi R.
        • Giordano T.
        • et al.
        Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets.
        Blood. 2005; 106: 419-427
        • Xiao M.
        • An L.
        • Yang X.
        • Ge X.
        • Qiao H.
        • Zhao T.
        • et al.
        Establishing a human pancreatic stem cell line and transplanting induced pancreatic islets to reverse experimental diabetes in rats.
        Sci China C Life Sci. 2008; 51: 779-788
        • Gershengorn M.C.
        • Hardikar A.A.
        • Wei C.
        • Geras-Raaka E.
        • Marcus-Samuels B.
        • Raaka B.M.
        Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells.
        Science. 2004; 306: 2261-2264
        • Abraham E.J.
        • Kodama S.
        • Lin J.C.
        • Ubeda M.
        • Faustman D.L.
        • Habener J.F.
        Human pancreatic islet-derived progenitor cell engraftment in immunocompetent mice.
        Am J Pathol. 2004; 164: 817-830
        • Claiborn K.C.
        • Stoffers D.A.
        Toward a cell-based cure for diabetes: advances in production and transplant of beta cells.
        Mt Sinai J Med. 2008; 75: 362-371
        • Geissmann F.
        • Jung S.
        • Littman D.R.
        Blood monocytes consist of two principal subsets with distinct migratory properties.
        Immunity. 2003; 19: 71-82
        • Greve B.
        • Hoffmann P.
        • Vonthein R.
        • Kun J.
        • Lell B.
        • Mycko M.P.
        • et al.
        NCF1 gene and pseudogene pattern: association with parasitic infection and autoimmunity.
        Malar J. 2008; 7: 251
        • Donzelli E.
        • Salvadè A.
        • Mimo P.
        • Vigano M.
        • Morone M.
        • Papagna R.
        • et al.
        Mesenchymal stem cells cultured on a collagen scaffold: in vitro osteogenic differentiation.
        Arch Oral Biol. 2007; 52: 64-73
        • Yu Y.
        • Yao A.H.
        • Chen N.
        • Pu L.Y.
        • Fan Y.
        • Lv L.
        • et al.
        Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration.
        Mol Ther. 2007; 15: 1382-1389
        • De Macedo Braga L.M.
        • Lacchini S.
        • Schaan B.D.
        • Rodrigues B.
        • Rosa K.
        • De Angelis K.
        • et al.
        In situ delivery of bone marrow cells and mesenchymal stem cells improves cardiovascular function in hypertensive rats submitted to myocardial infarction.
        J Biomed Sci. 2008; 15: 365-374
        • Da Silva Meirelles L.
        • Chagastelles P.C.
        • Nardi N.B.
        Mesenchymal stem cells reside in virtually all post-natal organs and tissues.
        J Cell Sci. 2006; 119: 2204-2213
        • Da Silva Meirelles L.
        • Caplan A.I.
        • Nardi N.B.
        In search of the in vivo identity of mesenchymal stem cells.
        Stem Cells. 2008; 26: 2287-2299
        • Zannettino A.C.
        • Paton S.
        • Arthur A.
        • Khor F.
        • Itescu S.
        • Gimble J.M.
        • et al.
        Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo.
        J Cell Physiol. 2008; 214: 413-421
        • Hoshino A.
        • Chiba H.
        • Nagai K.
        • Ishii G.
        • Ochiai A.
        Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells.
        Biochem Biophys Res Commun. 2008; 368: 305-310
        • Lansdorp P.M.
        Telomeres and disease.
        EMBO J. 2009; 28: 2532-2540
        • Oh B.K.
        • Seong J.K.
        • Lee J.E.
        • Chae K.J.
        • Roh K.J.
        • Park C.
        • et al.
        Induction of telomerase activity during an early burst of proliferation in pancreatic regeneration.
        Cancer Lett. 2002; 186: 93-98
        • Edlund H.
        Pancreatic organogenesis: developmental mechanisms and implications for therapy.
        Nat Rev Genet. 2002; 3: 524-532
        • Ellis P.
        • Fagan B.M.
        • Magness S.T.
        • Hutton S.
        • Taranova O.
        • Hayashi S.
        • et al.
        SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult.
        Dev Neurosci. 2004; 26: 148-165
        • Morton R.A.
        • Geras-Raaka E.
        • Wilson L.M.
        • Raaka B.M.
        • Gershengorn M.C.
        Endocrine precursor cells from mouse islets are not generated by epithelial-to-mesenchymal transition of mature beta cells.
        Mol Cell Endocrinol. 2007; 270: 87-93