Advertisement

Cardiomyogenic differentiation potential of human endothelial progenitor cells isolated from patients with myocardial infarction

  • Author Footnotes
    ∗ These authors contributed equally to this work.
    Elena López-Ruiz
    Footnotes
    ∗ These authors contributed equally to this work.
    Affiliations
    Department of Health Sciences, University of Jaén, Jaén, Spain
    Search for articles by this author
  • Author Footnotes
    ∗ These authors contributed equally to this work.
    Macarena Perán
    Footnotes
    ∗ These authors contributed equally to this work.
    Affiliations
    Department of Health Sciences, University of Jaén, Jaén, Spain

    Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain
    Search for articles by this author
  • Manuel Picón-Ruiz
    Affiliations
    Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain

    Braman Family Breast Cancer Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
    Search for articles by this author
  • Maria Angel García
    Affiliations
    Department of Oncology, Virgen de las Nieves, University Hospital, Granada, Spain

    Biosanitary Institute of Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
    Search for articles by this author
  • Esmeralda Carrillo
    Affiliations
    Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain

    Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
    Search for articles by this author
  • Manuel Jiménez-Navarro
    Affiliations
    UGC Corazón, Hospital ClínicoUniversitarioVirgen de la Victoria de Málaga, IBIMA Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Spain
    Search for articles by this author
  • M. Carmen Hernández
    Affiliations
    Cord Blood Bank, Centro Regional de Transfusión Sanguínea, Málaga, Spain
    Search for articles by this author
  • Isidro Prat
    Affiliations
    Cord Blood Bank, Centro Regional de Transfusión Sanguínea, Málaga, Spain
    Search for articles by this author
  • Eduardo De Teresa
    Affiliations
    UGC Corazón, Hospital ClínicoUniversitarioVirgen de la Victoria de Málaga, IBIMA Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, Spain
    Search for articles by this author
  • Juan Antonio Marchal
    Correspondence
    Correspondence: Juan-Antonio Marchal, MD, PhD, Department of Human Anatomy and Embryology, University of Granada, Granada 18070, Spain.
    Affiliations
    Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, Granada, Spain

    Biosanitary Institute of Granada (ibs.GRANADA), Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain

    Department of Human Anatomy and Embryology, University of Granada, Granada, Spain
    Search for articles by this author
  • Author Footnotes
    ∗ These authors contributed equally to this work.

      Abstract

      Background aims

      Endothelial progenitor cells (EPCs) are known to play a beneficial role by promoting postnatal vasculogenesis in pathological events, such as ischemic heart disease and peripheral artery disease. However, little is known about the potential of EPCs to restore heart damage tissue. We compared the cardiac differentiation capacity of EPCs isolated from peripheral blood of patients with acute myocardial infarction (AMI) with EPCs obtained from umbilical cord blood (UCB).

      Methods

      EPCs from both origins were isolated by density gradient centrifugation and characterized through the use of endothelial markers (UEA-1lectin, CD133 and KDR) and endothelial cell colony-forming unit assay. Cardiac differentiation capacity of EPCs was assessed by immunofluorescence and reverse transcriptase–polymerase chain reaction after 5-azacytidine (5-aza) induction.

      Results

      No significant differences were observed between the number of endothelial cell colony-forming units in peripheral blood of patients with AMI and samples from UCB. Moreover, 5-aza induced the appearance of myotube-like structures and the positive expression of sarcomeric α-actinin, cardiac troponin I and T and desmin in a similar pattern for both cell sources, which indicates a comparable acquisition of a cardiac-like phenotype.

      Conclusions

      For the first time, we have compared, in vitro, the cardiomyogenic potential of EPCs derived from patients with AMI with UCB-derived EPCs. Our data indicate that EPCs obtained from both origins have similar plasticity and functions and suggest a potential therapeutic efficacy in cardiac cell therapy.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Cytotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Laflamme M.A.
        • Murry C.E.
        Regenerating the heart.
        Nat Biotechnol. 2005; 23: 845-856
        • Asahara T.
        • Murohara T.
        • Sullivan A.
        • Silver M.
        • van der Zee R.
        • Li T.
        • et al.
        Isolation of putative progenitor endothelial cells for angiogenesis.
        Science. 1997; 275: 964-967
        • Massa M.
        • Rosti V.
        • Ferrario M.
        • Campanelli R.
        • Ramajoli I.
        • Rosso R.
        • et al.
        Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction.
        Blood. 2005; 105: 199-206
        • Yoder M.C.
        Editorial: Early and late endothelial progenitor cells are miR-tually exclusive.
        J Leukoc Biol. 2013; 93: 639-641
        • Asahara T.
        • Kawamoto A.
        • Masuda H.
        Concise review: Circulating endothelial progenitor cells for vascular medicine.
        Stem Cells. 2011; 29: 1650-1655
        • Quirici N.
        • Soligo D.
        • Caneva L.
        • Servida F.
        • Bossolasco P.
        • Deliliers G.L.
        Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells.
        Br J Haematol. 2001; 115: 186-194
        • Young P.P.
        • Vaughan D.E.
        • Hatzopoulos A.K.
        Biologic properties of endothelial progenitor cells and their potential for cell therapy.
        Prog Cardiovasc Dis. 2007; 49: 421-429
        • Navarro-Sobrino M.
        • Rosell A.
        • Hernandez-Guillamon M.
        • Penalba A.
        • Ribo M.
        • Alvarez-Sabin J.
        • et al.
        Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke.
        Microvasc Res. 2010; 80: 317-323
        • Shintani S.
        • Murohara T.
        • Ikeda H.
        • Ueno T.
        • Honma T.
        • Katoh A.
        • et al.
        Mobilization of endothelial progenitor cells in patients with acute myocardial infarction.
        Circulation. 2001; 103: 2776-2779
        • Dominguez-Franco A.
        • Gonzalez F.J.
        • Rodriguez-Losada N.
        • Marchal J.A.
        • Cabrera-Bueno F.
        • Carrillo E.
        • et al.
        [Factors influencing mobilisation of endothelial progenitor cells and angiogenic cytokines after an extensive acute myocardial infarction].
        Med Clin. 2012; 138: 415-421
        • Antonio N.
        • Fernandes R.
        • Rodriguez-Losada N.
        • Jimenez-Navarro M.F.
        • Paiva A.
        • de Teresa Galvan E.
        • et al.
        Stimulation of endothelial progenitor cells: a new putative effect of several cardiovascular drugs.
        Eur J Clin Pharmacol. 2010; 66: 219-230
        • Bakogiannis C.
        • Tousoulis D.
        • Androulakis E.
        • Briasoulis A.
        • Papageorgiou N.
        • Vogiatzi G.
        • et al.
        Circulating endothelial progenitor cells as biomarkers for prediction of cardiovascular outcomes.
        Curr Med Chem. 2012; 19: 2597-2604
        • Briguori C.
        • Testa U.
        • Riccioni R.
        • Colombo A.
        • Petrucci E.
        • Condorelli G.
        • et al.
        Correlations between progression of coronary artery disease and circulating endothelial progenitor cells.
        FASEB J. 2010; 24: 1981-1988
        • Vasa M.
        • Fichtlscherer S.
        • Aicher A.
        • Adler K.
        • Urbich C.
        • Martin H.
        • et al.
        Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.
        Circ Res. 2001; 89: E1-7
        • Jimenez-Navarro M.F.
        • Caballero-Borrego J.
        • Rodriguez-Losada N.
        • Cabrera-Bueno F.
        • Marchal J.A.
        • Estebaranz J.
        • et al.
        Influence of preinfarction angina on the release kinetics of endothelial progenitor cells and cytokines during the week after infarction.
        Eur J Clin Invest. 2011; 41: 1220-1226
        • Mead L.E.
        • Prater D.
        • Yoder M.C.
        • Ingram D.A.
        Isolation and characterization of endothelial progenitor cells from human blood.
        Curr Protoc Stem Cell Biol. 2008; 2 (2C 1)
        • Huang G.P.
        • Pan Z.J.
        • Jia B.B.
        • Zheng Q.
        • Xie C.G.
        • Gu J.H.
        • et al.
        Ex vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from human umbilical cord blood.
        Cell Transplant. 2007; 16: 579-585
        • Ott I.
        • Keller U.
        • Knoedler M.
        • Gotze K.S.
        • Doss K.
        • Fischer P.
        • et al.
        Endothelial-like cells expanded from CD34+ blood cells improve left ventricular function after experimental myocardial infarction.
        FASEB J. 2005; 19: 992-994
        • Hu C.H.
        • Li Z.M.
        • Du Z.M.
        • Zhang A.X.
        • Yang D.Y.
        • Wu G.F.
        Human umbilical cord-derived endothelial progenitor cells promote growth cytokines-mediated neorevascularization in rat myocardial infarction.
        Chin Med J. 2009; 122: 548-555
        • Takamiya M.
        • Okigaki M.
        • Jin D.
        • Takai S.
        • Nozawa Y.
        • Adachi Y.
        • et al.
        Granulocyte colony-stimulating factor-mobilized circulating c-Kit+/Flk-1+ progenitor cells regenerate endothelium and inhibit neointimal hyperplasia after vascular injury.
        Arterioscler Thromb Vasc Biol. 2006; 26: 751-757
        • Losordo D.W.
        • Henry T.D.
        • Davidson C.
        • Sup Lee J.
        • Costa M.A.
        • Bass T.
        • et al.
        Intramyocardial, autologous CD34+ cell therapy for refractory angina.
        Circ Res. 2011; 109: 428-436
        • Badorff C.
        • Brandes R.P.
        • Popp R.
        • Rupp S.
        • Urbich C.
        • Aicher A.
        • et al.
        Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes.
        Circulation. 2003; 107: 1024-1032
        • Condorelli G.
        • Borello U.
        • De Angelis L.
        • Latronico M.
        • Sirabella D.
        • Coletta M.
        • et al.
        Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration.
        Proc Natl Acad Sci U S A. 2001; 98: 10733-10738
        • Thal M.A.
        • Krishnamurthy P.
        • Mackie A.R.
        • Hoxha E.
        • Lambers E.
        • Verma S.
        • et al.
        Enhanced angiogenic and cardiomyocyte differentiation capacity of epigenetically reprogrammed mouse and human endothelial progenitor cells augments their efficacy for ischemic myocardial repair.
        Circ Res. 2012; 111: 180-190
        • Peran M.
        • Lopez-Ruiz E.
        • Gonzalez-Herrera L.
        • Bustamante M.
        • Valenzuela A.
        • Marchal J.A.
        Cellular extracts from post-mortem human cardiac tissue direct cardiomyogenic differentiation of human adipose tissue-derived stem cells.
        Cytotherapy. 2013; 15: 1541-1548
        • Hill J.M.
        • Zalos G.
        • Halcox J.P.
        • Schenke W.H.
        • Waclawiw M.A.
        • Quyyumi A.A.
        • et al.
        Circulating endothelial progenitor cells, vascular function, and cardiovascular risk.
        N Engl J Med. 2003; 348: 593-600
        • Kadivar M.
        • Khatami S.
        • Mortazavi Y.
        • Shokrgozar M.A.
        • Taghikhani M.
        • Soleimani M.
        In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells.
        Biochem Biophys Res Commun. 2006; 340: 639-647
        • Asahara T.
        • Masuda H.
        • Takahashi T.
        • Kalka C.
        • Pastore C.
        • Silver M.
        • et al.
        Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization.
        Circ Res. 1999; 85: 221-228
        • Asahara T.
        • Takahashi T.
        • Masuda H.
        • Kalka C.
        • Chen D.
        • Iwaguro H.
        • et al.
        VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells.
        EMBO J. 1999; 18: 3964-3972
        • Murohara T.
        Cord blood-derived early outgrowth endothelial progenitor cells.
        Microvasc Res. 2010; 79: 174-177
        • Yang J.
        • Ii M.
        • Kamei N.
        • Alev C.
        • Kwon S.M.
        • Kawamoto A.
        • et al.
        CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow.
        PLoS One. 2011; 6: e20219
        • Urbich C.
        • Dimmeler S.
        Endothelial progenitor cells: characterization and role in vascular biology.
        Circ Res. 2004; 95: 343-353
        • Salven P.
        • Mustjoki S.
        • Alitalo R.
        • Alitalo K.
        • Rafii S.
        VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells.
        Blood. 2003; 101: 168-172
        • Dimmeler S.
        • Zeiher A.M.
        Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis?.
        J Mol Med. 2004; 82: 671-677
        • Mohle R.
        • Bautz F.
        • Rafii S.
        • Moore M.A.
        • Brugger W.
        • Kanz L.
        The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1.
        Blood. 1998; 91: 4523-4530
        • Zhang D.
        • Fan G.C.
        • Zhou X.
        • Zhao T.
        • Pasha Z.
        • Xu M.
        • et al.
        Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium.
        J Mol Cell Cardiol. 2008; 44: 281-292
        • Zeng H.
        • Zhao D.
        • Mukhopadhyay D.
        KDR stimulates endothelial cell migration through heterotrimeric G protein Gq/11-mediated activation of a small GTPase RhoA.
        J Biol Chem. 2002; 277: 46791-46798
        • Kim J.
        • Jeon Y.J.
        • Kim H.E.
        • Shin J.M.
        • Chung H.M.
        • Chae J.I.
        Comparative proteomic analysis of endothelial cells progenitor cells derived from cord blood- and peripheral blood for cell therapy.
        Biomaterials. 2013; 34: 1669-1685
        • Rohde E.
        • Malischnik C.
        • Thaler D.
        • Maierhofer T.
        • Linkesch W.
        • Lanzer G.
        • et al.
        Blood monocytes mimic endothelial progenitor cells.
        Stem Cells. 2006; 24: 357-367
        • Burlacu A.
        • Rosca A.M.
        • Maniu H.
        • Titorencu I.
        • Dragan E.
        • Jinga V.
        • et al.
        Promoting effect of 5-azacytidine on the myogenic differentiation of bone marrow stromal cells.
        Eur J Cell Biol. 2008; 87: 173-184
        • Makino S.
        • Fukuda K.
        • Miyoshi S.
        • Konishi F.
        • Kodama H.
        • Pan J.
        • et al.
        Cardiomyocytes can be generated from marrow stromal cells in vitro.
        J Clin Invest. 1999; 103: 697-705
        • Ye N.S.
        • Chen J.
        • Luo G.A.
        • Zhang R.L.
        • Zhao Y.F.
        • Wang Y.M.
        Proteomic profiling of rat bone marrow mesenchymal stem cells induced by 5-azacytidine.
        Stem Cells Dev. 2006; 15: 665-676
        • Yoon J.
        • Min B.G.
        • Kim Y.H.
        • Shim W.J.
        • Ro Y.M.
        • Lim D.S.
        Differentiation, engraftment and functional effects of pre-treated mesenchymal stem cells in a rat myocardial infarct model.
        Acta Cardiol. 2005; 60: 277-284
        • Marchal J.A.
        • Picon M.
        • Peran M.
        • Bueno C.
        • Jimenez-Navarro M.
        • Carrillo E.
        • et al.
        Purification and long-term expansion of multipotent endothelial-like cells with potential cardiovascular regeneration.
        Stem Cells Dev. 2012; 21: 562-574
        • Kadner A.
        • Hoerstrup S.P.
        • Tracy J.
        • Breymann C.
        • Maurus C.F.
        • Melnitchouk S.
        • et al.
        Human umbilical cord cells: a new cell source for cardiovascular tissue engineering.
        Ann Thorac Surg. 2002; 74: S1422-S1428
        • Sugimoto K.
        • Gordon S.P.
        • Meyerowitz E.M.
        Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation?.
        Trends Cell Biol. 2011; 21: 212-218
        • Schachinger V.
        • Assmus B.
        • Britten M.B.
        • Honold J.
        • Lehmann R.
        • Teupe C.
        • et al.
        Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial.
        J Am Coll Cardiol. 2004; 44: 1690-1699

      Linked Article

      • Erratum
        CytotherapyVol. 17Issue 2
        • Preview
          In the article “Cardiomyogenic differentiation potential of human endothelial progenitor cells isolated from patients with myocardial infarction” (Cytotherapy 2014;16:1229-1237) an author’s name was not included in the byline. The corrected byline and affiliations appears below.
        • Full-Text
        • PDF